• Title/Summary/Keyword: Water-Energy Food

Search Result 516, Processing Time 0.03 seconds

Influence of Extrusion on the Solubility of Defatted Soybean Flour in Enzymatic Hydrolysis

  • Cha, Jea-Yoon;Shin, Han-Seung;Cho, Yong-Jin;Kim, Chong-Tai;Kim, Chul-Jin
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.543-548
    • /
    • 2007
  • Low-energy processing technology, which enhances the utility of defatted soybean flour (DSF), was developed using extrusion processing. DSF was extruded at different conditions using a twin screw extruder and then, dried at $40^{\circ}C$ for 20 hr. The nitrogen solubility index (NSI), viscosity, water solubility index (WSI), and water absorption index (WAI) of DSF increased after extrusion processing. The density of DSF extrudates decreased with the decrease in water content from 53 to 33% and the increase in extrusion temperature from 110 to $160^{\circ}C$. The addition of NaOH from 1.2 to 1.8% and citric acid from 1 to 5% increased the total solubility (TS) of DSF due to the decrease of protein coiling and hydrophobic bonds formation during extrusion processing. When viscozyme was reacted first, TS, NSI, and soluble carbohydrate content of DSF hydrolysates increased about 12, 6, and 7%, respectively, compared to them reacted with protease first. The TS and NSI of DSF hydrolysates were increased about 15 and 10%, respectively, by extrusion processing at alkaline and acidic pH. Extrusion processing at alkaline and acidic pH contributed the increase of efficiency to hydrolyze DSF samples using enzyme.

Effect of Untreated Water Flow Rate at Certain Temperature on the Discharge of Treated Water

  • Ullah, Muhammad Arshad;Aslam, Muhammad;Babar, Raheel
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.6
    • /
    • pp.5-9
    • /
    • 2019
  • Desalination requires large energy. This experiment deals to desalinate brackish water through solar panels. The discharge from desalination plants is almost entirely water, and .01 percent is salt. Desalination is a process that extracts minerals from saline water. Solar-powered desalination technologies can be used to treat non-traditional water sources to increase water supplies in rural, arid areas. Water scarceness is a rising dilemma for large regions of the world. Access to safe, fresh and pure clean drinking water is one of the most important and prime troubles in different parts of the world. Among many of water cleansing technologies solar desalination/distillation/purification is one of the most sustainable and striking method engaged to congregate the supply of clean and pure drinkable water in remote areas at a very sound cost. Six types of dripper having discharge 3 - 8 lh-1 were installed one by one and measured discharge and volume of clean water indicated that at 6 lh-1 untreated water discharge have maximum evaporation and volume of clean water was 19.2 lh-1 at same temperature and radiations. Now strategy was developed that when increased the temperature the intake discharge of untreated water must be increased and salt drained water two times more than treated water.

Water, Energy, and Food Nexus: Preserving Local Resources through Inter-Basin Trade

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.153-153
    • /
    • 2018
  • Water-Energy-Food (WEF) nexus is a new holistic resources management concept that considers the interconnections among resources for sustainable resources planning and management. The current challenge is to fulfill the required demand in the lack of available resources. A traditional way to provide more available resource is by increase in production, but it caused increment of indirect demand of other interlinked resources. Importing resources from other area (where local supply is redundant) is another option to secure local resources with additional economic expenditure. The WEF nexus-trading model adapts the previously developed nationwide nexus simulation model with additional input parameters and functions to simulate trading scenarios. In general, the analysis starts with the quantification of local resources deficit (potential importing amount) and redundancy (potential exporting amount) of each area. Then, a trade module is initiated by determining possible donor area and importation amount. Finally, the nexus simulation for all area is re-run to determine final resources supply-demand results including the trading amount. The trade option provides an opportunity to meet local demands without draining local resources. However, the production capability of donor area may limit the importation amount. The newly developed trade option allows more alternatives for stakeholders to determine resources management plans.

  • PDF

A Study on Optimum Conditions Derivation on Thermal Hydrolysis of Food Wastewater and the Applicability of the Thermal Solubilization in Biological Denitrification Process (음폐수의 열가수분해 최적조건 도출과 생물학적 탈질공정에서 열가용화액의 적용 가능성에 관한 연구)

  • Lee, Ki Hee;You, Hee Gu;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.151-158
    • /
    • 2015
  • The aim of this research is to derive an optimum operating condition for the thermal solubilization equipment that is employed to increase concentration of soluble organic materials and to assess whether it would be possible to use the waste sludge generated by thermal solubilization reaction as an external carbon source in biological denitrification process. For the purpose, we have constituted a laboratory-size thermal solubilization equipment and have assessed thermal hydrolysis efficiency based on various reaction temperature and reaction time. We have also derived SDNR using the waste sludge generated by thermal solubilization reaction through a batch experiment. As a result of research, the highest thermal hydrolysis efficiency of about 42.8% was achieved at $190^{\circ}C$ of reaction temperature and at 90 minutes of reaction time. And when SDNR was derived using the waste sludge, the value obtained was $0.080{\sim}0.094\;g\;NO_3{^-}-N/g\;MLVSS{\cdot}day$, showing SDNR that is higher than that obtained by the results of existing researches that used common wastewater as an external carbon source. Accordingly, in view of the fact that food wastes vary quite a bit in characteristics based on the area they are generated from and seasonal change, it seems that a flexible operation of thermal solubilization equipment is required through on-going monitoring of food wastes that are imported to food wastes recycling facilities.

Nutrient and Food Intake of Koreans by the Economic Status and Meal Pattern Using 1998 Korean National Health Examination Nutrition Survey (1998년도 국민건강영양조사자료를 이용한 한국인의 경제수준별 끼니별 영양 및 식품섭취현황)

  • 문현경;김유진
    • Journal of Nutrition and Health
    • /
    • v.37 no.3
    • /
    • pp.236-250
    • /
    • 2004
  • The objective of this study was to investigate difference in the diet by the kind of meal and the economic status. Nutrient contents at each meals were compared and differences in food intake at different meal were analyzed by economic status. Data from the 1998 Korean National Health Examination Nutrition Survey were used. Using the poverty line based on the 1998 Korean minimum cost of living, the subjects (n = 10400) were classified into high class (36.1%), middle class (40.7%) and low class (23.1 %). Most nutrient intakes were obtained for main meals regardless of economic status. For high class, breakfast, lunch, dinner and snacks bring about 21, 29, 30 and 19 % of total energy intake, for middle class 22, 29, 30 and 19% and for low class 24, 30, 30 and 16%, respectively. The high-middle class people tend to get more food intakes and nutrients at dinner and snacks, while the low class at main meals. This result was associated with the consumption of a smaller number of meals and a greater number of snacks daily as the economic level was going up (p 〈 0.05). Meals contributed to energy, protein and fat intake, and snacks to water, retinol and vitamin C. The food intakes by food group were different at meals by economic class. Seaweed product were popular breakfast foods in both middle and low groups. Thus three meals such as breakfast, lunch and dinner still delivered most of the energy and most of the macro-nutrients regardless of economic status.

Effect of Blanching Treatment on Quality Characteristics and Antioxidant Activity of Beetroots (블랜칭 처리가 비트의 품질특성과 항산화 활성에 미치는 영향)

  • Hae Yeon Choi;Soo Bin Kim;Eun Seong Go;Ji Hye Chu;Hee-Kyung Jeon;Jin Hee Choi
    • Journal of the Korean Society of Food Culture
    • /
    • v.38 no.6
    • /
    • pp.434-441
    • /
    • 2023
  • This study investigated quality characteristics and antioxidant activity of beetroots after blanching. Beetroots were blanched in distilled water, 2% NaCl water, and 2% citric acid water at 100℃ for 3 minutes (the blanched group). The moisture content was highest in the control (CON) at 91.30% (p<0.05), and cooking loss was lowest in the water-blanched beetroot (BW) at 5.39% (p<0.01). Chromaticity decreased after blanching compared to CON (p<0.001). Total polyphenol contents (TPC) and total flavonoid contents (TFC) decreased after blanching, and as a result of comparing the True retention (TR) of the blanching treatment group, BW had the highest with TPC TR 91.22% and TFC TR 70.51%. DPPH and ABTS+radical scavenging activities were highest in the CON, and in the blanching group BW was highest scavenging activity. The total number of microorganisms in the CON group was 2.97 log CFU/g, whereas no microorganisms were detected in the blanched groups. Therefore, this study, blanching in water without additives is the most appropriate method for preserving physiologically active substances and nutrients in beetroots and inhibiting microbial growth.

Relationship Analysis of Reference Evapotranspiration and Heating Load for Water-Energy-Food Nexus in Greenhouse (물-에너지-식량 넥서스 분석을 위한 시설재배지의 기준작물증발산량과 난방 에너지 부하 관계 분석)

  • Kim, Kwihoon;Yoon, Pureun;Lee, Yoonhee;Lee, Sang-Hyun;Hur, Seung-Oh;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.23-32
    • /
    • 2019
  • Increasing crop production with the same amount of resources is essential for enhancing the economy in agriculture. The first prerequisite is to understand relationships between the resources. The concept of WEF (Water-Energy-Food) nexus analysis was first introduced in 2011, which helps to interpret inter-linkages among the resources and stakeholders. The objective of this study was to analyze energy-water nexus in greenhouse cultivation by estimating reference evapotranspiration and heating load. For the estimation, this study used the physical model to simulate the inside temperature of the agricultural greenhouse using heating, solar radiation, ventilated and transferred heat losses as input variables. For estimating reference evapotranspiration and heating load, Penman-Monteith equation and seasonal heating load equation with HDH (Heating Degree-Hour) was applied. For calibration and validation of simulated inside temperature, used were hourly data observed from 2011 to 2012 in multi-span greenhouse. Results of the simulation were evaluated using $R^2$, MAE and RMSE, which showed 0.75, 2.22, 3.08 for calibration and 0.71, 2.39, 3.35 for validation respectively. When minimum setting temperature was $12^{\circ}C$ from 2013 to 2017, mean values of evapotranspiration and heating load were 687 mm/year and 2,147 GJ/year. For $18^{\circ}C$, Mean values of evapotranspiration and heating load were 707 mm/year and 5,616 GJ/year. From the estimation, the relationship between water and heat energy was estimated as 1.0~2.6 GJ/ton. Though additional calibrations with different types of greenhouses are necessary, the results of this study imply that they are applicable when evaluating resource relationship in the greenhouse cultivation complex.

Home Healing Cases for Gangrene Sores and Diseases Using Fake Energy Salts (Fake Energy Salts을 이용한 욕창 및 질병의 자택치유 사례)

  • Kim, Min-Ju
    • Journal of Naturopathy
    • /
    • v.9 no.2
    • /
    • pp.71-78
    • /
    • 2020
  • Purpose: This study was to present home-care cases of gangrene sores or prevalent diseases using fake energy salt (FES) water containing energy. Methods: The health functional foods used for disease management were FES Water. Each product was Myeongil Leaf powder, dried yeast, propolis, fermented organic calcium, and royal jelly. Changes were investigated after taking this food. Some of them were combined with hospital treatment, and most of them were experienced by patients at home while managing the affected area. Results: One patient with high fever swine flu, who was treated in a hospital, had a fever dropping to the normal range in 2 hours, and one patient with a leg fracture healed in about six weeks, and one patient had bone adhesion in 2 weeks. Patients with rhinitis recovered after taking FES, and the intraocular pressure of patients with damaged retinopathy fell from 40 mmHg to 20 mmHg after taking FES. One patient with postpartum sequelae was said to have improved their aching limbs four days, and a Covid-19 confirmed patient admitted to the hospital was discharged ten days after starting taking FES during treatment. The size of the gangrene sores in 19 subjects initially ranged from 1 to 7 cm. Most of them were alleviated or healed by continuing to manage them at home with health functional food intake and FES for two weeks to a year. Conclusions: The above results are personal experiences and health functions, such as fake energy salts. It was possible to recognize that food was helpful for health promotion, but no final medical diagnosis was made.

Relationship Between Enhancement of Electrostriction and Decrease of Activation Energy in Porcine Pancreatic Lipase Catalysis

  • PARK HYUN;LEE KI-SEOG;PARK SEON-MI;LEE KWANG-WON;KIM AUGUSTINE YONGHWI;CHI YOUNG-MIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.587-594
    • /
    • 2005
  • The contribution of electrostriction of water molecules to the stabilization of the negatively charged tetrahedral transition state of a lipase-catalyzed reaction was examined by means of kinetic studies involving high-pressure and solvent dielectric constant. A good correlation was observed between the increased catalytic efficiency of lipase and the decreased solvent dielectric constant. When the dielectric constant of solvents was lowered by 5.00 units, the losses of activation energy and free energy of activation were 7.92 kJ/mol and 11.24 kJ/mol, respectively. The activation volume for $k_{cat}$ decreased significantly as the dielectric constant of solvent decreased, indicating that the degree of electrostriction of water molecules around the charged tetrahedral transition state has been enhanced. These observations demonstrate that the increase in the catalytic efficiency of the lipase reaction with decreasing dielectric constant resulted from the stabilization of electrostatic energy for the formation of an oxyanion hole, and that this stabilization was caused by the increase of electrostricted water around the charged tetrahedral transition state. Therefore, we conclude that the control of solvent dielectric constant can stabilize the tetrahedral transition state, thus lowering the activation energy.