• Title/Summary/Keyword: Water-Binder Ratio

Search Result 492, Processing Time 0.025 seconds

Physical Properties of the Hardened Loess Using Natural Binding Materials (천연 결합재를 사용한 황토경화체의 물성에 대한 연구)

  • Kim, Jin Seok;Oh, Young Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.44-51
    • /
    • 2012
  • In this study, hardened loess bodies, which did not compose of cement or any chemical binder, were made and tested to evaluate the physical properties such as slump, air content, and compressive strength. Addition of a natural binding material to mixture of loess and lime showed better performance in physical properties. However a lime among natural binding materials is considered as a superior binder to improve the properties of the hardened bodies. According to the experimental results, mixing proportion with 45% of W/B ratio, $285kg/m^3$ of water content, and 60% lime substitution ratio was recommended to acquire the good performance of physical properties for the hardened loess bodies.

An empirical relationship for compressive strength of preplaced aggregate concrete with modified binder

  • Kunal Krishna Das;Eddie Siu-Shu Lam;Jeong Gook Jang
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.545-559
    • /
    • 2023
  • In this study, an experimental investigation was conducted to assess the influence of ground granulated blast furnace slag (GGBS) and silica fume (SF) on the fresh and hardened properties of grout specimens and preplaced aggregate concrete (PAC). Grout proportions were optimized statistically using a factorial design and were applied to 10 mm and 20 mm coarse aggregates to produce PAC. The results demonstrate that GGBS has a more significant effect on the compressive strength of grout compared to SF, with a small increase or decrease in the GGBS content having a greater influence on the compressive strength of grout than SF. The water to binder ratio had the most significant effect on the compressive strength of PAC, followed by the coarse aggregate size and sand to binder ratio. An empirical relationship to predict the compressive strength of PAC was proposed through an experimentally derived factorial design along with a statistical analysis of collectively obtained data and a deep literature review. The results predicted by the empirical relationship were in good agreement with those of PAC produced for verification.

The Application of High Strength Concrete in Batcher Plant and its Workability (레미콘 공장에서 적용 가능한 고강도 콘크리트 및 시공성에 관한 연구)

  • Kim, Jeong-Sik;Kim, Bong-Hyun;Jung, Jin;Lee, Jae-Sam;Kang, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.69-74
    • /
    • 1998
  • Concrete has a many problems to apply high rise building of its low strength to weight and low ductility, compared to steel products. Therefore, it is necessary to make high strength concrete for applying to night rise building. In the experiment, the high strength concrete was made in variable of unit weight of binder, water to binder ratio(W/B), and sand to aggregate ratio(S/a) using batcher plant. As a result, it was possible to make high strength concrete using only materials for ordinary concrete without admixtures such like silica fume in batcher plant.

  • PDF

Modeling the compressive strength of cement mortar nano-composites

  • Alavi, Reza;Mirzadeh, Hamed
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • Nano-particle-reinforced cement mortars have been the basis of research in recent years and a significant growth is expected in the future. Therefore, optimization and quantification of the effect of processing parameters and mixture ingredients on the performance of cement mortars are quite important. In this work, the effects of nano-silica, water/binder ratio, sand/binder ratio and aging (curing) time on the compressive strength of cement mortars were modeled by means of artificial neural network (ANN). The developed model can be conveniently used as a rough estimate at the stage of mix design in order to produce high quality and economical cement mortars.

Nano-Silica effect on the physicomechanical properties of geopolymer composites

  • Khater, H.M.
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.181-195
    • /
    • 2016
  • Addition of nano-$SiO_2$ (NS) to geopolymer composites has been studied through measurement of compressive strengths, FTIR and XRD analysis. Alumino-silicate materials are coarse aggregate included waste concrete and demolished walls with its cementing binder, cement kiln dust (CKD) used and can possess a pronouncing activation for the geopolymer reaction resulting from the high alkali contents within. Materials prepared at water/binder ratios in a range of 0.30: 0.40 under curing of $40^{\circ}C$ and 100% Relative Humidity (R.H.), while the used activator is sodium hydroxide in the ratio of 2 wt. %. First, CKD is added in the ratio from 10 up to 50 wt., %, and the demolished walls was varied depending on the used CKD content, while using constant ratio of waste concrete (40 wt., %). Second step, depending on the optimum CKD ratio resulted from the first one (40 wt. %), so the control geopolymer mix composed of cement kiln dust, demolished walls and waste concrete in the ratio (40:20:40, wt %). Nano-silica partially replaced waste concrete by 1 up to 8%. Results indicated that, compressive strengths of geopolymer mixes incorporating nano-silica were obviously higher than those control one, especially at early ages and specially with 3%NS.

Effect of Superplasticizers and Admixtures on the Fluidity and Compressive Strength Development of Cementless Mortar Using Hwangtoh Binder (혼화제·재가 무시멘트 황토 모르타르의 유동성 및 압축강도 발현에 미치는 영향)

  • Yang, Keun-Hyeok;Hwang, Hey-Zoo;Kim, Sun-Young;Song, Jin-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.793-800
    • /
    • 2006
  • This paper reports test results to assess the influence of superplasticizers and different admixture on the flow and compressive strength development of cementless mortar using developed hwangtoh binder. Test specimens were classified into four groups: series for I the mixing ratio of superplasticizers, series II for a kind and replacement level of admixtures according to the variation of water/hwangtoh binder ratio, series III for the specific surface area and replacement level of ground granulated blast-furnace slag and series IV for the replacement level of powered superplasticizer agent developed to improve slump loss of concrete. The proper replacement level of each admixture is proposed for enhancement the flow and compressive strength of the hwangtoh binder mortar.

Eco-friendly Textile Printing using Marigold Pigment(1): Effect of Binder Type and Mixing Ratio (메리골드 안료를 이용한 친환경 텍스타일 프린팅(1): 바인더의 종류와 혼합비율의 효과)

  • Yeo, Youngmi;Shin, Younsook
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.233-240
    • /
    • 2019
  • Dyeing is an essential process for improving the value of textile products, but it is considered as one of industries causing pollution because of producing wastewater containing hazardous chemicals as well as using a large amount of water and energy. Global demand for greener technologies in textile field is getting much more attention and accordingly, the use of eco-friendly natural dyes is growing much larger. In textile printing, both dyes and pigments can be used. Pigment printing is more simple process and requires less water and less energy, compared to dye printing. In this study, the organic pigment was prepared from the marigold colorant. Samples were stencil printed, pressed(70℃, 3min) and then heat treated(150℃, 5min). The uptake of polyacrylic acid as a chemical binder was the lowest. In particular, marigold pigments were excellent in color and texture when Guar Gum and Sodium Alginate were used as binders. In addition, the light and washing fastness was rated very high as 4, 4/5 grades, and the rubbing fastness was also excellent as 3 and 4 grades.

Electrochemical characteristics of active carbon prepared by chemical activation for anode of lithium ion battery (이차전지 음극용 화학적 활성화법으로 제조된 활성탄의 전기화학적 특성)

  • Lee, Ho-Yong;Kim, Tae-Yeong;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.480-487
    • /
    • 2015
  • In this study, several kinds of active carbons with high specific surface area and micro pore structure were prepared from the coconut shell charcoal using chemical activation method. The physical property of prepared active carbon was investigated by experimental variables such as activating chemical agents to char coal ratio, flow rate of inert gas and temperature. It was shown that chemical activation with KOH and NaOH was successfully able to make active carbons with high surface area of $1900{\sim}2500m^2/g$ and mean pore size of 1.85~2.32 nm. The coin cell using water-based binder in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC:DMC:EMC=1:1:1 vol%) showed better capacity than that of oil-based binder. Also, it was found that the coin cell of water-based binder shows an improved cycling performance and coulombic efficiency.

Effect of firing temperatures on alkali activated Geopolymer mortar doped with MWCNT

  • Khater, H.M.;Gawwad, H.A. Abd El
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.225-242
    • /
    • 2015
  • The current investigation aims to study performance of geopolymer mortar reinforced with Multiwalled carbon nanotubes upon exposure to $200^{\circ}C$ to $1000^{\circ}C$ for 2 hrs. MWCNTs are doped into slag Geopolymer mortar matrices in the ratio of 0.0 to 0.4, % by weight of binder. Mortar composed of calcium aluminosilicate to sand (1:2), however, binder composed of 50% air cooled slag and 50% water cooled slag. Various water / binder ratios in the range of 0.114-0.129 used depending on the added MWCNT, while 6 wt., % sodium hydroxide used as an alkali activator. Results illustrate reduction in mechanical strength with temperature except specimens containing 0.1 and 0.2% MWCNT at $200^{\circ}C$, while further increase in temperature leads to decrease in strength values of the resulting geopolymer mortar. Also, decrease in firing shrinkage with MWCNT up to 0.1% at all firing temperatures up to $500^{\circ}C$ is observed, however the shrinkage values increase with temperature up to $500^{\circ}C$. Further increase on the firing temperature up to $1000^{\circ}C$ results in an increase in the volume due to expansion.

Evaluation of Rebar Corrosion Due to Carbonation of Concrete (콘크리트의 중성화로 인한 철근의 부식 정도 평가)

  • 이창수;설진성;윤인석
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.21-30
    • /
    • 2000
  • Recently, reinforced concrete structures exposed to severe enviroment are increased in metropolitan area. The acid rain and CO2 penetrated towad rebar, thus rebar corrosion occurred. The corrosion of rebar in concrete is, as in most corrosion processes, an electrochemical nature. The corrosion may severely affect on durability and service life of such a concrete structures. This study was performed for the purpose of acquiring data about corrosion condition and considering a countermeasure to prevent rebar from corroding due to carbonation of concrete. An accelerated car bonation testing procedure was applied to measure the evolution of carbonation and rebar corrosion with time for various water-binder ratios and cement types.