• 제목/요약/키워드: Water waves

Search Result 1,228, Processing Time 0.032 seconds

The Effect of Skewness of Nonlinear Waves on the Transmission Rate through a Porous Wave Breaker (파형의 왜도가 투과성 방파제 투과율에 미치는 영향)

  • Cho, Yong Jun;Kang, Yoon Koo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.369-381
    • /
    • 2017
  • It has been presumed that highly nonlinear skewed waves frequently observed in a surf zone could significantly influence the transmission behaviour via a porous wave breaker due to its larger inertia force than its nonlinear counterparts of zero skewness [Cnoidal waves]. In this study, in order to confirm this perception, a numerical simulation has been implemented for 6 waves the skewness of that range from 1.02 to 1.032. A numerical simulation are based on the Tool Box called as the ihFoam that has its roots on the OpenFoam. Skewed waves are guided by the shoal of 1:30 slope, and the flow in the porous media are analyzed by adding the additional damping term into the RANS (Reynolds Averaged Navier-Stokes equation). Numerical results show that the highly nonlinear skewed waves are of higher transmitted ratio than its counterparts due to its stronger inertia force. In this study, in order to see whether or not the damping at the porous structure has an effect on the wave celerity, we also derived the dispersive relationships of Nonlinear Shallow Water Eq. [NSW] with damping at the porous structure being accounted. The newly derived dispersive relationships shows that the phase lag between the damping friction and the free surface elevation due to waves significantly influence the wave celerity.

A Study on the Numerical Simulation of the Seismic Sea Waves in the East Sea based on the Boussinesq Equation (Boussinesq 방정식을 이용한 동해지진해일 수치실험 연구)

  • Kim, Sung-Dae;Jung, Kyung-Tae;Park, Soo-Young
    • Ocean and Polar Research
    • /
    • v.29 no.1
    • /
    • pp.9-31
    • /
    • 2007
  • Most seismic sea waves in the East Sea originate from earthquakes occurring near the Japanese west coast. While the waves propagate in the East Sea, they are deformed by refraction, diffraction and scattering. Though the Boussinesq equation is most applicable for such wave phenomena, it was not used in numerical modelling of seismic sea waves in the East Sea. To examine characteristics of seismic sea waves in the East Sea, numerical models based on the Boussinesq equation are established and used to simulate recent tsunamis. By considering Ursell parameter and Kajiura parameter, it is proved that Boussinesq equation is a proper equation for seismic sea waves in the East Sea. Two models based on the Boussinesq equation and linear wave equation are executed with the same initial conditions and grid size ($1min{\times}1min$), and the results are compared in various respects. The Boussinesq equation model produced better results than the linear model in respect to wave propagation and concentration of wave energy. It is also certified that the Boussinesq equation model can be used for operational purpose if it is optimized. Another Boussinesq equation model whose grid size is $40sec{\times}30sec$ is set up to simulate the 1983 and 1993 tsunamis. As the result of simulation, new propagation charts of 2 seismic sea waves focused on the Korean east coast are proposed. Even though the 1983 and 1993 tsunamis started at different areas, the propagation paths near the Korean east coast are similar and they can be distinguished into 4 paths. Among these, total energy and propagating time of the waves passing over North Korea Plateau(NKP) and South Korea Plateau(SKP) determine wave height at the Korean east coast. In case of the 1993 tsunami, the wave passing over NKP has more energy than the wave over SKP. In case of the 1983 tsunami, the huge energy of the wave passing over SKP brought about great maximum wave heights at Mukho and Imwon. The Boussinesq equation model established in this study is more useful for simulation of seismic sea waves near the Korean east coast than it is the Japanese coast. To improve understanding of seismic sea waves in shallow water, a coastal area model based on the Boussinesq equation is also required.

MASS TRANSPORT IN FINITE AMPLITUDE WAVES

  • ;Robert T. Hudspeth
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1988.07a
    • /
    • pp.29-36
    • /
    • 1988
  • A general scheme is developed which determines the Lagrangian motions of water particles by the Eulerian velocity at their mean positions by use of Taylor's theorem. Utilizing the Stokes finite-amplitude wave theory, the mass transport velocity which includes the effects of higher-order wave components is determined. The fifth-order theory predicts the mass transport velocity less than that given by the existing second-order theory over the whole depth. Limited experimental data for changes in wave celerity in closed wave flumes are compared with the theoretical predictions.

  • PDF

Estimation of Tsunami Run-up Heights with Parameters (매개변수에 따른 지진해일의 처오름높이 예측)

  • Ahn, Young-Chang;Hwang, Kyu-Nam;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.437-445
    • /
    • 2003
  • Since many islands are located in the South Sea, unexpected damage by tsunamis could be caused by mutual interferences between adjacent islands. In this study, the variation of run-up heights is investigated by using different crest lengths of incident waves and different distances between two adjacent islands. The run-up height sharply increases when the crest length of Incident waves is greater than the distance bewteen outer boundaries of two islands. The run-up height also increases as the distance between two adjacent islands decreases.

A Study of Variation of Wave-induced Stresses in a Seabed (파랑하중에 의한 해저지반의 응력변화에 대한 연구)

  • 장병욱;박영권;우철웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.79-89
    • /
    • 1996
  • It is expected that the soil hehaviours in the seahed subjected to cyclic wave loads are much different from that on the ground Cyclic shear stresses developed below the ocean bed as a result of a passing wave train may progressively build up pore pressure in certain soils. Such build-up pore pressure may be developed dynamic behaviour such as liquefaction and significant deformation of the seabed. Currently available analytical and testing methods for the seabed subjected to cyclic wave loads are not general. The purpose of the study are to provide a test method in laboratory and to analyse the mechanism of wave-induced stresses and liquefactions potentials of the unsaturated silty marine sand. It is showed that the test set-up made especially for this study delivers exactly oscillatory wave pressures of the form of sine function. Laboratory test results defining the cyclic shear strength of the unsaturated porous medium that is homogenously sedimented. It is understood that the pore water pressure due to induced-waves is not accumulated as the wave number increases but reveals periodical change on the still water surface. The magnitude of the pore water pressure tends to be attenuated radically with a certain time lag under the action of both high and low waves as depth increases.

  • PDF

A Study on the Development of Moving Watched Chamber (다중식 가두리 개발에 관한 연구)

  • Hong, Bong-Ki;Kim, In-Chul
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.93-106
    • /
    • 1995
  • This paper describes the development of moving watched chamber. For the most part, the watched chamber have been located in the inner-bay. But, there are many problems of sea-water pollution. Therefore, the watched chamber must be relocated to undeveloped coastal area. The watched chamber which is located in the bay has a bit of damage by bad weather. But, the moving watched chamber would be exposed to bad water. It is desirable to improve the system of chamber. If we make a good design of the moving watched chamber with studying of waves and hydrodynamics, it would be possible to culture fish at the coastal sea area. When a fixed system is changed into a movable one, we can obtain the following advantages: 1. The possibility of diminishing the sea water pollution, easying the overcrowded state in a inner-bay farm, and relieved of limitation caused by bad conditions such as waves, red tides and terrains. 2. It would be easy not only to move the watched chamber system in accordance with weather conditions or occurrence of red tides, but also to select good sites for watched chamber fishes. 3. Transportation and good supervision with the automated design system can results with the effectiveness which increases the amount of aquatic products.

  • PDF

Bullet Train of Giant Nonlinear Internal Waves from Luzon Strait

  • Liu, Cho-Teng;Hsu, Ming-Kuang;Chen, Hsien-Wen;Wang, Dee-Way;Chyou, Yuan-Jie;Lee, Chang-Wei
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.934-937
    • /
    • 2006
  • In the northeastern South China Sea (SCS), fast westward moving (about 2.9 m/s) non-linear internal waves (NLIWs) are emanated nearly daily from the Luzon Strait. Their propagation speed is faster than NLIWs previously observed in the deep water of world oceans, their amplitude of 140 m or more is the largest free propagating NLIWs so far observed in the deep ocean. These NLIWs energized the top 1500 m of the water column, heaving it up and down in 20 min. Their associated energy density and energy flux are the largest observed to date. During 2005 and 2006 experiment, they were found west of the HengChun Ridge (HCR) that links Luzon and Taiwan Islands. This coincides with founding in satellite images, no NLIW front was found east of HCR. But, the turbulent environment east of HCR may prohibit surface signature of NLIWs that were emanated from sills between Batan Islands. The relative contribution of the two ridges on NLIW in Luzon Strait is still under study.

  • PDF

Heaving displacement amplification characteristics of a power buoy in shoaling water with insufficient draft

  • Kweon, Hyuck-Min;Cho, Il-Hyoung;Cho, Hong-Yeon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.614-624
    • /
    • 2013
  • The resonance power buoy is a convincing tool that can increase the extraction efficiency of wave energy. The buoy needs a corresponding draft, to move in resonance with waves within the peak frequency band where wave energy is concentrated. However, it must still be clarified if the buoy acts as an effective displacement amplifier, when there is insufficient water depth. In this study, the vertical displacement of a circular cylinder-type buoy was calculated, with the spectrum data observed in a real shallow sea as the external wave force, and with the corresponding draft, according to the mode frequency of normal waves. Such numerical investigation result, without considering Power Take-Off (PTO) damping, confirmed that the area of the heave responses spectrum can be amplified by up to about tenfold, compared with the wave energy spectrum, if the draft corresponds to the peak frequency, even with insufficient water depth. Moreover, the amplification factor of the buoy varied, according to the seasonal changes in the wave spectra.

Measurement of Horizontal Coherence Using a Line Array In Shallow Water

  • Park, Joung-Soo;Kim, Seong-Gil;Na, Young-Nam;Kim, Young-Gyu;Oh, Teak-Hwan;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2E
    • /
    • pp.78-86
    • /
    • 2003
  • We analyzed the measured acoustic field to explore the characteristics of a horizontal coherence in shallow water. Signal spatial coherence data were obtained in the continental shelf off the east coast of Korea using a horizontal line array. The array was deployed on the bottom of 130 m water depth and a sound source was towed at 26 m depth in the source-receiver ranges of 1-13 ㎞. The source transmitted 200 ㎐ pure tone. Topography and temperature profiles along the source track were measured to investigate the relationship between the horizontal coherence and environment variations. The beam bearing disturbance and array signal gain degradation is examined as parameters of horizontal coherence. The results show that the bearing disturbance is about ± 8° and seems to be affected by temporal variations of temperature caused by internal waves. The array signal gains show degradation more than 5㏈ by the temporal and spatial variations of temperature and by the down-sloped topography.

Effect of ultrasonic irradiation on membrane fouling and membrane wetting in direct contact membrane distillation process (초음파 조사가 직접 접촉식 막증발 공정의 막오염과 막젖음에 미치는 영향)

  • Jang, Yongsun;Choi, Yongjun;Lee, Sangho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.343-350
    • /
    • 2016
  • Membrane distillation (MD) is a novel separation process that have drawn attention as an affordable alternative to conventional desalination processes. However, membrane fouling and pore wetting are issues to be addressed prior to widespread application of MD. In this study, the influence of ultrasonic irradiation on fouling and wetting of MD membranes was investigated for better understanding of the MD process. Experiments were carried out using a direct contact membrane distillation apparatus Colloidal silica was used as a model foulants in a synthetic seawater (35,000 mg/L NaCl solution). A vibrator was directed attached to membrane module to generate ultrasonic waves from 25 kHz (the highest energy) to 75 kHz (the lowest energy). Flux and TDS for the distillate water were continuously monitored. Results suggested that ultrasonic irradiation is effective to retard flux decline due to fouling only in the early stage of the MD operation. Moreover, wetting occurred by a long-term application of ultrasonic rradiation at 75 kHz. These results suggest that the conditions for ultrasonic irradiation should be carefully optimized to maximize fouling control and minimize pore wetting.