• 제목/요약/키워드: Water wall

검색결과 1,650건 처리시간 0.027초

충돌수분류에 의한 벽면분류 영역에서의 전열특성 (Heat Transfer Characteristics in Wall Jet Region with Impinging Water Jet)

  • 엄기찬;서정윤
    • 대한설비공학회지:설비저널
    • /
    • 제13권1호
    • /
    • pp.14-21
    • /
    • 1984
  • The purpose of this investigation is to study heat transfer characteristics in wall jet region on a flat plate caused by upward impinging water jet. In the wall jet region, heat transfer results by impinging water jet are being compared with the ones with supplementary water. As the radius increases, the heat transfer coefficient in the wall jet region consquently decreases, but decreasing nozzle-heat plate distance, the reduction rate increases. The experimental equation is expressed as follows : $$\frac{N_{ur}}{P_r^{0.4}}{\cdot}\overline{\xi}=m(\overline{\eta}{\codt}Re{\delta})^n,\;m=0.034\~0.056,\;n=1.74\~2.007$$ The optimum height of supplementary water is obtained to improve heat transfer effect of wall jet region.

  • PDF

EPANET 2.0과 관망실험을 통한 배수관망 염소농도 감쇄 비교연구 (A comparative study for the decay of chlorine residual using EPANET2.0 and an experimental pipeline system)

  • 백다원;김현준;김상현
    • 상하수도학회지
    • /
    • 제32권5호
    • /
    • pp.411-419
    • /
    • 2018
  • The residual chlorine concentration is an essential factor to secure reliable water quality in the water distribution systems. The chlorine concentration decays along the pipeline system and the main processes of the reaction can be divided into the bulk decay and the wall decay mechanisms. Using EPANET 2.0, it is possible to predict the chlorine decay through bulk decay and wall decay based on the pipeline geometry and the hydraulic analysis of the water distribution system. In this study, we tried to verify the predictability of EPANET 2.0 using data collected from experimental practices. We performed chlorine concentration measurement according to various Reynolds numbers in a pilot-scale water distribution system. The chlorine concentration was predicted using both bulk decay model and wall decay model. As a result of the comparison between experimental data and simulated data, the performance of the limited $1^{st}$-order model was found to the best in the bulk decay model. The wall decay model simulated the initial decay well, but the overall chlorine decay cannot be properly predicted. Simulation also indicated that as the Reynolds number increased, the impact of the wall.

벽면흡착에 의해 야기되는 유동 수치해석 (NUMERICAL SIMULATION OF FLOWS INDUCED BY WALL ADHESION)

  • 명현국
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.2-5
    • /
    • 2011
  • This paper presents a numerical study on multiphase flows induced by wall adhesion The CSF(Continuum Surface Force} model is used for the calculation of the surface tension force and implemented in an in-house solution code(PowerCFD). The present method(code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with volume capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing As an application of the present method, the effects of wall adhesion are numerically simulated with the CSF model for a shallow pool of water located at the bottom of a cylindrical tank. Two different cases are computed, one in which the water wets the wall and one in which the water does not wet the wall. It is found that the present method simulates efficiently and accurately surface tension-dominant multiphase flows induced by wall adhesion.

  • PDF

2D Finite element analysis of rectangular water tank with separator wall using direct coupling

  • Mandal, Kalyan Kumar;Maity, Damodar
    • Coupled systems mechanics
    • /
    • 제4권4호
    • /
    • pp.317-336
    • /
    • 2015
  • The present paper deals with the analysis of water tank with elastic separator wall. Both fluid and structure are discretized and modeled by eight node-elements. In the governing equations, pressure for the fluid domain and displacement for the separator wall are considered as nodal variables. A method namely, direct coupled for the analysis of water tank has been carried out in this study. In direct coupled approach, the solution of the fluid-structure system is accomplished by considering these as a single system. The hydrodynamic pressure on tank wall is presented for different lengths of tank. The results show that the magnitude of hydrodynamic pressure is quite large when the distances between the separator wall and tank wall are relatively closer and this is due to higher rotating tendency of fluid and the higher sloshed displacement at free surface.

Numerical analysis for hydrodynamic interaction effects between vessel and semi-circle bank wall

  • Lee, Chun-Ki;Moon, Serng-Bae;Oh, Jin-Seok;Lee, Sang-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.691-698
    • /
    • 2015
  • The hydrodynamic interaction forces and moments induced by the vicinity of bank on a passing vessel are known as wall effects. In this paper, the characteristics of interaction acting on a passing vessel in the proximity of a semi-circle bank wall are described and illustrated, and the effects of ship velocity, water depth and the lateral distance between vessel and semi-circle bank wall are discussed. For spacing between ship and semi-circle bank wall (SP) less than about 0.2 L and depth to ship's draft ratio (h/d) less than around 2.0, the ship-bank interaction effects increase steeply as h/d decreases. However, for spacing between ship and semi-circle bank wall (SP) more than about 0.3 L, the ship-bank interaction effects increase slowly as h/d decreases, regardless of the water depth. Also, for spacing between ship and semi-circle bank wall (SP) less than about 0.2 L, the hydrodynamic interaction effects acting on large vessel increase largely as ship velocity increases. In the meantime, for spacing between ship and semi-circle bank wall ($S_P$) more than 0.3 L, the interaction effects increase slowly as ship velocity increases.

콘크리트 호안블록이 수질환경에 미치는 영향 (An influence of the Concrete blocks for Retaining Wall and Revetment on the Under Water Environment)

  • 김정진;최훈;이상태;김기철;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.167-170
    • /
    • 1999
  • Recently, it is often reported that many rivers are polluted with diverse swages etc. Concrete blocks for retaining wall and revetment is considered as one of the reasons that bring about water pollution, which is indicated by the grouops related to the conservation of environment. From the viewpoint of theoretical matters, although concrete blocks for retaining wall and revetment are know to have no relations to water pollution, it is required to measure the level of water pollution more accurately. Therefore, in this paper, analysis of water, which concrete blocks for retaining wall and revetment is put in for certain periods, are carried out in order to the level of water pollution.

  • PDF

외벽측 급수관의 동결 과정에 관한 연구 (The Freezing Process of the Water Supply Pipe in an Exterior Wall)

  • 강한기;이재헌
    • 설비공학논문집
    • /
    • 제19권11호
    • /
    • pp.782-788
    • /
    • 2007
  • In this paper, the freezing process of the water supply pipe in the exterior wall of an apartment house was analyzed by numerical method. The thickness of the pipe insulation and the percentage of insulation damage were considered as parameters in this paper. In the cases of the 0%, 8% and 20% damaged of the 5mm thickness insulation, the freezing was completed after 13 hours, 10 hours and 7 hours respectively. And in cases of the 10mm thickness insulation, the freezing was completed after 18 hours, 10.5 hours and 8 hours respectively. As a result, it is predicted that the water freezing would occurred when the water supply pipe with 8% or 20% damaged insulation are installed in the exterior wall. However, the water freezing would not occurred when the water supply pipe with 10mm thickness insulation of 0% damage is installed in the exterior wall.

ANALYSIS OF VELOCITY STRUCTURE OF WALL JET ORIGINATING FROM CIRCULAR ORIFICES IN SHALLOW WATER

  • Kim, Dae-Geun;Seo, Il-Won
    • Water Engineering Research
    • /
    • 제3권4호
    • /
    • pp.235-245
    • /
    • 2002
  • In this study, breakwater model which has several outlet pipes to discharge water is settled in the experimental open channel and mean velocity distributions of multi wall jet are measured. The length of flow of flow establishment of wall jet is shorter than that of free jet and decay rate of jet centerline longitudinal velocity along x is linear in 0.3 $\leq$ x/$\l_q$ $\leq$ 17. The rate of vertical width and lateral width spreading of multi wall jet is respectively 0.0753, 0.157~0.190.

  • PDF

Failure Investigation of Fire-Side Water-Wall Tube Boiler

  • Fatah, M.C.;Agustiadi, D.;Pramono, A.W.
    • Corrosion Science and Technology
    • /
    • 제20권5호
    • /
    • pp.242-248
    • /
    • 2021
  • Unforeseen failures of boilers in power plants may affect the continuation of electricity generation. Main failures in boilers are influenced by the tube material, tube position, boiler service temperature and pressure, and chemical composition of the feed water and coal. This investigation was intended to find answers on the causes and mechanism of failure of the fire-side boiler water-wall tubes, due to perforation and corrosion. The tube conformed to the material requirements in terms of its chemical composition and hardness. Microscopic examination showed ferrite and pearlite indicating no changes in its microstructure due to the temperature variation. SEM test showed a single layer and homogenous film density particularly on the area far from perforation. However, layers of corrosion product were formed on the nearby perforation area. EDX showed that there were Na, Ca, S, and O elements on the failed surface. XRD indicated the presence of Fe2O3 oxide. The failure mechanism was identified as a result of significant localized wall thinning of the boiler water wall-tube due to oxidation.