• Title/Summary/Keyword: Water vapor permeation

Search Result 70, Processing Time 0.026 seconds

Removal of VOCs from Water by Vapor Permeation through PU/PDMS Membrane (PU/PDMS 막을 이용한 증기투과공정에 의한 물로부터 휘발성 유기화합물 제거)

  • 임지원;남상용;김영진;천세원
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.157-165
    • /
    • 2004
  • PU/PDMS(Poly urethane/poly(dimethylsiloxane ) membranes were prepared to enhance chemical resistance over VOCs from 4,4'-diphenylmethane diisocyanate (MDI), poly(dimethylsiloxane) (PDHS). Swelling characteristics and vapor permeation performance of toluene, 1,2-dichloroethane, hexane through PU/PDMS membrane with various feed VOCs concentration were investigated. Swelling ratio of VOCs showed tendency of Toluene > 1,2-dichloroethane > hexane. Fiux of toluene and 1,2-dichloroethane increased with increasing fled concentration while the flux of hexane maintained with increasing feed. VOCs concentration in permeate maintained 50 wt% oi concentration due to high affinity of PU/PDHS membranes to VOCs.

Characterization of Several Selectively Permeable Membrane Materials with Water Resistance and Protective Performance (수분저항성 및 방호성능을 가지는 선택투과막 재료의 특성평가)

  • Kang, Jae-Sung;Seo, Hyeon-Kwan;Kwon, Tae-Geun;Kim, Jin-Won;Park, Hyen-Bae;Lee, Hae-Wan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.553-559
    • /
    • 2013
  • We make several membranes with multilayer structure and characterize protective performance in various ways. Multilayer membrane is composed of shell fabric, support membrane, functional polymer membrane and liner fabric. In this research, we apply cellulose acetate derivatives as base polymer in functional polymer membrane and characterize water resistance, water vapor permeation, protective performance against DMMP and aerosol. Test results show that cellulose based polymer with polyethyleneimine possess performance with good water vapor permeation and excellent protective capability against DMMP equivalent to Saratoga type's protective suits. Also, these materials possess aerosol protective performance and water resistance.

Separation Characteristics of Oxygen Isotopes with Hydrophobic PTFE Membranes (소수성 PTFE 막의 산소동위원소 분리특성)

  • 김재우;박상언;김택수;정도영;고광훈;박경배
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.154-161
    • /
    • 2003
  • We measured the permeation characteristics of water with the hydrophobic PTFE membranes dependent on water temperature to confirm the separation of oxygen isotopes using Air Gap Membrane Distillation (AGMD) and Vacuum Enhanced Membrane Distillation (VEMD). Isotopic concentrations of $H_2^{16}O$ and $H_2^{18}O$ of the permeated water vapor were measured by Diode Laser Absorption Spectroscopy. Concentrations of the heavy oxygen isotopes in the permeated water vapor were decreased. Isotope separation coefficients for the hydrophobic PTFE membranes were 1.004∼1.01 depending on the experimental conditions. We observed the effects of air in membrane pores on the oxygen isotope separation. Isotope separation coefficients for the hydrophobic PTFE membranes without air in pores are higher than those for the membrane with air in pores.

The flow of $CO_{2}$ and $N_{2}$ gases through Asymmetric polytherimide Membrane

  • Park, You-In;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.09a
    • /
    • pp.73-85
    • /
    • 1995
  • The asymmetric hollow fiber membranes were prepared by the wet spining of polyetherimide dope solution and the effect of hollow fiber structures on the permeation characteristics of carbon dioxide and nitrogen gases through these membrane were investigated. As the concentration of the $\gamma$-butyrolactone (GBL) in dope solution, acting as a swelling agent was increased, the structure of hollow fiber was changed from the finger to sponge type. The permeabilities of gases (CO$_{2}$, N$_{2}$) through these membrane were measured over the wide range of pressure under different temperature. The effect of water vapor on the permeabilities of gases was also investigated. The measured permeabilities showed the different characteristics depending on the structure of membranes. It was found that the flow through the pores were dominant over the polymers matrix. Blocking effect by water vapor in the pores of skin layer greatly improved the ideal separation factor of carbon dioxide/nitrogen.

  • PDF

Preparation and Characterization of PET/PVA-BA/OPP Multi-layer Films for Seasoned-laver Packaging (조미김 포장을 위한 PET/PVA-BA/OPP 다층필름 제조 및 특성분석)

  • Lim, Mijin;Kim, Dowan;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • To identify applicability for packaging material of polyvinyl alcohol (PVA)/boric acid (BA) coating solution with highly-enhanced water vapor and oxygen barrier properties, the PET/PVA-BA/OPP multi-layer films were prepared through comma coating and lamination process. The oxygen and water vapor permeabilities, and tensile strength of as-prepared multi-layer films were investigated before and after pressure cooker test (PCT). Although oxygen and water vapor permeabilites, and mechanical properties of PET/PVA-BA/OPP multi-layer films was decreased after PCT, their properties were highly enhanced as increase of BA contents in PVA matrix. This is strongly related with enhanced cross-linking density in PVA-BA layer. In storage test of seasoned-laver, the PET/PVA-BA/OPP multi-layer films were comparatively effective to suppress the increase in peroxide value originating from oxidation of seasoned-laver. Comparing the commercially available PP/Al-metallized PP for seasoned-laver packaging, however, PET/PVA-BA/OPP multi-layer films did not show any advantage in water activity. This is due to higher water vapor permeation properties of as-prepared multi-layer films. Therefore, further studies are required to enhance the water vapor permeation in PET/PVA-BA/OPP multi-layer films.

Effect of 2-butoxyethanol Additive in the Casting Solution on the Characteristics of Nonsolvent Vapor Induced Phase Inversion PES Membranes (비용매증기 유발 상 전이 공정을 이용한 PES 멤브레인 제조에 있어 2-butoxyethanol 첨가 효과)

  • Kim, No-Won
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.76-86
    • /
    • 2010
  • This study investigated the effect of 2-butoxyethanol (BE) as a nonsolvent additive, relative humidity and air contact time on the structure formation of microfiltration membranes, permeation and morphology properties in phase inversion process. The membranes were prepared by using polyethersulfone (PES)/Dimethyl formamide (DMF)/p-toluenesulfonic acid (TSA)/Polyvinylpyrrolidone (PVP)/BE casting solution and water coagulant. Casting solutions containing various concentration of BE were exposed to a water vapor, under 60 and 80% of relative humidity for 40 and 90 sec, which would be absorbed on. The correlations between the membrane permeation properties and surface/inner structures of membrane were investigated. The characterization of membranes was carried out by a capillary flow porometer, a FE-SEM and a water permeation test apparatus. The surface structure of PES membranes was affected by the exposure time as well as the relative humidity strongly. Furthermore, the addition of BE helped control surface and inner structure at certain humidity and exposure time.

Removal of Volatile Organic Compounds from Water Using PU/PDMS-PTFE Composite Membranes by Vapor Permeation Separation Process (PU/PDMS-PTFE 복합막을 이용한 증기투과공정에 의한 물로부터 휘발성 유기화합물 제거)

  • Rhim Ji Won;Cheon Se Won;Yun Tae Ihl;Shin Hyun Su;Kim Baek Ahm;Chung Rae Ick
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.44-51
    • /
    • 2005
  • Polyurethane-polysiloxanes (PU/PDMS) was synthesized using 4,4'-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BD) to overcome the weakness to the organic chemicals. The composite membranes were prepared onto porous poly(tetrafluoroethylene) (PTFE) supports. In vapor permeation experiments, the flux increased with increasing operating temperatures and feed concentrations while the separation factors showed the opposite trend, so-called 'trade-off'. In this study, the effect of the flux on the operating temperatures was not severe since the content of the soft segments is fairly higher than that of the hard segments. The composite membrane type of PU/PDMS maintained high flux and separation factor as well when comparing with the dense type membranes.

Water and oxygen permeation through transparent ethylene vinyl alcohol/(graphene oxide) membranes

  • Kim, Hye Min;Lee, Heon Sang
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.50-56
    • /
    • 2014
  • We prepared ethylene vinyl alcohol (EVOH)/graphene oxide (GO) membranes by solution casting method. X-ray diffraction analysis showed that GOs were fully exfoliated in the EVOH/GO membrane. The glass transition temperatures of EVOH were increased by adding GOs into EVOH. The melting temperatures of EVOH/GO composites were decreased by adding GOs into EVOH, indicating that GOs may inhibit the crystallization of EVOH during non-isothermal crystallization. However, the equilibrium melting temperatures of EVOH were not changed by adding GOs into EVOH. The oxygen permeability of the EVOH/GO (0.3 wt%) film was reduced to 63% of that of pure EVOH film, with 84% light transmittance at 550 nm. The EVOH/GO membranes exhibited 100 times better (water vapor)/(oxygen) selectivity performance than pure EVOH membrane.

The protection effects from water vapor permeation of inorganic films prepared by electron-beam evaporation technique (전자-선 증착 기술에 의해 성막된 다양한 무기 박막들의 투습 방지 특성)

  • Ryu, Sung-Won;Rhee, Byung-Roh;Kim, Hwa-Min
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • Various diatomic inorganic films and their composite films are packed as passivation films covering Ca cells on glass substrates by using an electron-beam evaporation technique. When these Ca cells are exposed to an ambient atmosphere, the water vapor penetrating through the passivation layers is absorbed in the Ca cells, resulting in a gradual progress of transparency in the Ca cells, which can be represented by changes of the optical transmittance in the visible range. Compared with the saturation times for the Ca cells to become completely transparent in the atmosphere, the protection effects of water vapor are estimated for various passivation films. The composite films consisting silicon oxide($SiO_2$) and tin oxide($SnO_2$) or zinc oxide(ZnO) are found to show a superior protection effect of water vapor as compared with diatomic inorganic films. Also, the main factors affecting the permeation of water vapor through the oxide films are found to be the polarizability and the packing density.