• Title/Summary/Keyword: Water vapor permeability (WVP)

Search Result 54, Processing Time 0.033 seconds

Preparation of Gelatin Film Containing Grapefruit Seed Extract and Its Antimicrobial Effect (자몽종자 추출물을 함유한 Gelatin Film의 항균 효과)

  • Lim, Geum-Ok;Hong, Youn-Hee;Song, Kyung-Bin
    • Food Science and Preservation
    • /
    • v.16 no.1
    • /
    • pp.134-137
    • /
    • 2009
  • The gelatin film containing grapefruit seed extract (GSE) was prepared by incorporating different amounts (0, 0.02, 0.05, 0.08, 0.1%) of GSE into the film. The tensile strength (TS) of the film increased by the addition of GSE, and water vapor permeability (WVP) of the film decreased. In particular, the gelatin film containing 0.1% GSE had a TS of 10.28 MPa, while the control had 8.68 MPa. WVP of the film containing 0.1% GSE decreased to 2.18 ng m/m2 s Pa, compared to 2.48 ng $m/m^{2}s$ Pa of the control. In addition, incorporation of 0.1% GSE to the gelatin film decreased the populations of Escherichia coli O157:H7 and Listeria monocytogenes by 2.67 and 3.15 log CFU/g, respectively, compared to the control. These results suggest that as a packaging material, gelatin film containing GSE can have antimicrobial activity against pathogenic microorganisms in foods.

Preparation of Edible Films from Soybean Meal (대두박을 이용한 가식성 필름의 제조에 관한 연구)

  • Yang, Sung-Bum;Cho, Seung-Yong;Rhee, Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.452-459
    • /
    • 1997
  • Effect of extraction pH on mechanical properties such as tensile strength (TS) and elongation (E) and on water vapor permeability (WVP) of soybean protein isolate (SPI) edible films extracted from soybean meal was investigated. Five pHs, acidic range (pH 2.0 and pH 3.0), neutral range (pH 7.0) and alkalic range (pH 10.0 and 12.0), were used to extract SPI. TS of the film extracted at pH 7.0 was the lowest, and WVP of $SPI_3$ (SPI extracted at pH 3) film was the lowest value among the films. The WVP of $SPI_3$ films was $3.349\;{\times}\;10^{-10}\;g{\cdot}m/m^2{\cdot}s{\cdot}Pa$ and increased to $3.871\;{\times}\;10^{-10}\;g{\cdot}m/m^2{\cdot}s{\cdot}Pa$ as film thickness increased from $55\;{\mu}m$ to $72\;{\mu}m$ thickness. Three different plasticizers (glycerol, polyethylene glycol and propylene glycol) were used for $SPI_2$ (SPI extracted at pH 2) film. TS of $SPI_2$ films was 12.297 MPa and decreased to 1.356 MPa for glycerol and showed the same trend in other two plasticizers. The SPI films extracted at acidic range were shown higher mechanical properties and lower water vapor permeabilities than those of extracted at neutral and alkalic ranges. The difference of SPI film properties seemed to be attributed by 11S/7S ratio as well as protein content.

  • PDF

Effect of Plasticizer and Cross-Linking Agent on the Physical Properties of Protein Films

  • Lee, Myoung-Suk;Lee, Se-Hee;Ma, Yu-Hyun;Park, Sang-Kyu;Bae, Dong-Ho;Ha, Sang-Do;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.1
    • /
    • pp.88-91
    • /
    • 2005
  • To improve the physical properties of protein films, various plasticizers and cross-linking agents were used in the preparation of the films. For zein film, 3% polypropylene glycol with 3% glycerol was the best plasticizer, while 2.5% glycerol was the most suitable for soy protein isolate (SPI) film in terms of tensile strength (TS), % elongation, and water vapor permeability (WVP). Formaldehyde, glutaraldehyde, glyoxal, and cinnamaldehyde as cross-linking agents of protein films were used to further improve the physical properties of the films. All aldehydes used as cross-linking agent in this study improved TS of zein and SPI films. In particular, cinnamaldehyde was the best cross-linking agent due to its safety in foods. These results suggest that appropriate use of plasticizer and cross-linking agent like cinnamaldehyde should improve the physical properties of protein films for use in food packaging.

Physical Properties of Gelidium corneum Films Treated with Cinnamaldehyde - Research Note -

  • Ku, Kyoung-Ju;Seo, Yung-Bum;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.2
    • /
    • pp.122-125
    • /
    • 2007
  • Gelidium corneum films were prepared using cinnamaldehyde as a cross-linking agent and their physical properties were determined. Tensile strength (TS) value of the film containing 0.01% cinnamaldehyde was higher than the control by 8.31 MPa. However, increasing cinnamaldehyde from 0.01% to 0.1% significantly decreased TS from 9.54 MPa to 0.03 MPa, and no film was formed at 1% cinnamaldehyde. On the contrary, when cinnamaldehyde content was increased from 0.01% to 0.1%, % elongation was increased from 1.44% to 2.75%. Water vapor permeability (WVP) of the film containing 0% and 0.01% cinnamaldehyde were 1.64 ng m/m$^2$sPa and 1.42 ng m/m$^2$sPa, respectively. There was no significant difference in Hunter values among treatments. Scanning electron microscopy results revealed that both cinnamaldehyde and control films had similar surfaces. These results suggest that 1.5% Gelidium corneum treated with 0.01% cinnamaldehyde should be the most suitable condition for film formation.

Effects of PEG (Polyethylene Glycol) Concentration and Mixing Ratio of PEG/Gly (Glycerol) on the Physical Properties of Silk Fibroin Films (PEG(polyethylene glycol) 농도와 PEG/Gly(glycerol) 흔합비에 따른 견 피브로인 필름의 물성)

  • Ma, Yu-Hyun;Song, Kyung-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.1
    • /
    • pp.121-125
    • /
    • 2006
  • To study the effects of plasticizer concentration and its ratio on the physical properties of silk fibroin films, polyethylene glycol (PEG) was used at 4 different concentrations; 1, 2, 3, $4.5\%$ (w/v). Tensile strength (TS) and water vapor permeability (WVP) increased with the increase of PEG concentration, while opposite trend was observed for percent elongation of silk fibroin films. WVP of silk fibroin films increased from $2.54\;ng{\cdot}m/m^2spa$ for $1\%$ of PEG to $5.41\;ng{\cdot}m/m^2sPa$ for $4.5\%$. In addition, a mixture of PEG and glycerol (Gly) as a plasticizer was used at the ratio of 100:0, 75:25, 50:50, 25:75, and 0:100 (w/w). Percent elongation of the films was improved to $130.95\%$ when the ratio of 75:25 was used. On the contrary, WVP of silk fibroin films increased with the decrease of the ratio of PEG:Gly. Effect of the plasticizer concentration and its ratio on the color of silk fibroin films was negligible. These results suggest that mixture of PEG and Gly as a plasticizer provide more flexible than PEG alone in silk fibroin films, and the best ratio of PEG to Gly was 75:25.

Modification of Na-Alginate Films by $CaCl_2$ Treatment ($CaCl_2$의 처리에 의한 알긴산 필름의 물성개선)

  • Rhim, Jong-Whan;Kim, Ji-Hye;Kim, Dong-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.217-221
    • /
    • 2003
  • Effect of direct addition of $CaCl_2$ into sodium alginate film-making solution and immersion of alginate films into $CaCl_2$ solutions on tensile strength (TS), percentage elongation at break (E), water vapor permeability (WVP), and water solubility (WS) of the films were investigated. TS of alginate films prepared by both methods increased. E of $CaCl_2-added$ films did not change significantly (P>0.05), whereas that of $CaCl_2-immersion$ films decreased significantly (p<0.05). WVP of films prepared by both methods decreased significantly, but the effect was more significant in the $CaCl_2-immersion$ films. Water resistance was not changed in the $CaCl_2-added$ films, whreras increased significantly in $CaCl_2-immersion$ films (p<0.05). Properties of alginate films depend on the concentration of $CaCl_2$ treatments in both methods, and they also depend on treatment time in the immersion method.

Preparation of Defatted Grape Seed Meal Protein Composite Films (포도씨박 단백질을 이용한 가식성 필름의 제조)

  • Song, Hye-Yeon;Jo, Wan-Shin;Song, Nak-Bum;Song, Kyung-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1274-1280
    • /
    • 2012
  • Defatted grape seed meal protein (DGP) was extracted, and DGP films containing various plasticizers were prepared. To improve the mechanical properties of DGP film, nanoclay or gelatin was incorporated in the film-forming solution to manufacture DGP composite films. Among the plasticizers of fructose (FRU), sucrose (SUC), and polypropylene glycol (PPG), DGP film containing a SUC : PPG ratio of 2.5:0.5 exhibited the best film-forming ability. Addition of Cloisite $Na^+$ improved the mechanical properties of DGP film. Tensile strength (TS) and elongation at break (E) of the film containing 5% Cloisite $Na^+$ were 1.45 MPa and 71.97%, respectively. Regarding the DGP/gelatin composite films, TS and water vapor permeability (WVP) increased with increasing gelatin amount, whereas E decreased. In particular, the DGP/gelatin (2:2) composite film exhibited 20.95 MPa TS and 12.25% E. These results suggest that the DGP film prepared from defatted grape seed meal can be used as a food packaging material.

Improvement of Physical Properties for Edible Films from Alaska Pollack Protein (명태 단백질로 제조한 가식성 필름의 물성 개선)

  • Mok Jong Soo;Song Ki Cheol;Kang Chang Su;Chang Soo Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.417-423
    • /
    • 2002
  • The edible films were prepared from the protein of alaska pollack, Theragra chalcogrmma. Effects of plasticizer, cross linker and laminated film on physical properties such as tensile strength (TS), elongation (E) and water vapor permeability (WVP) of films were investigated. In adding various kinds of plasticizers, TS of the films prepared with propylene glycol (PG) was the highest, and followed sorbitol, polyethylene glycol 200 (PEG 200) and glycerol. Elongation of the films prepared with glycerol was the highest, then sorbitol, PEG 200 and PG. WVP of films showed lower in order of PG, sorbitol, glycerol and PEG 200.75 decreased with the increment of plasticizer concentration, but elongation increased, The addition of both PG and PEG 200 effected weakly on elongation, so they were inadequate as plasticizer for the film. Mixtures of glycerol and sorbitol, which showed opposing both TS and elongation in the films, could control the physical properties of the films. With increasing relative humidity, TS decreased, while elongation and equilibrium moisture content increased. By adding the cross linkers such as ascorbic acid, citric acid and succinic acid, TS and m of films increased, while elongation decreased. Ascorbic acid, citric acid, succinic acid were most effective for TS at 0.2, 0.1 and $0.1\%, respectively. Laminated film with alaska pollack protein and corn zein improved TS above two times, reduced WVP about $20\~30\%$, as compared with the Elm from alaska pollack protein. Two films did not show the difference to oxygen permeability, but they showed about tenfold greater oxygen resistance than polyethylene film. Laminated film showed higher b and $\Delta$E value of color difference, lower a and L value than the film from alaska pollack protein.

Effect of zinc oxide nanoparticle types on the structural, mechanical and antibacterial properties of carrageenan-based composite films (산화아연 나노입자 유형이 카라기난 기반 복합 필름의 구조, 기계적 및 항균 특성에 미치는 영향)

  • Ga Young Shin;Hyo-Lyn Kim;So-Yoon Park;Mi So Park;Chanhyeong Kim;Jae-Young Her
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.126-137
    • /
    • 2024
  • In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using three distinct zinc salts: zinc acetate, zinc chloride, and zinc nitrate. These ZnONPs were subsequently utilized in the fabrication of carrageenan-ZnONPs (Car-ZnONPs) composite films. The study assessed influence of the various ZnONPs on the morphological, water vapor barrier, color, optical, and antimicrobial properties of the Car-ZnONPs composite films. The surface morphology and UV-blocking attributes of the composite films were affected by the type of ZnONPs used, but their surface color, transparency, and chemical structure remained unaltered. The composite film's thickness and elongation at break (EB) significantly increased, while the tensile strength significantly decreased. In contrast, film's elastic modulus (EM) and water vapor permeability coefficient (WVP) showed no significant difference. All the composite films with added ZnONPs demonstrated potent antibacterial activity against Escherichia coli O157:H7 and Listeria monocytogenes . Among the carrageenan-based composite films, Car-ZnONPsZC showed the highest antibacterial and UV-blocking properties, and its elongation at break was significantly higher than that of the pure carrageenan films. This suggests that ZnONPs composite films have the potential to be used as an active packaging film, preserve the safety of the packaged food and extend shelf life.

Effects of a Carbohydrase Mixture, Ultrasound, and Irradiation Treatments on the Physical Properties of Defatted Mustard Meal-based Edible Films (탈지 겨자씨로 제조한 가식성 생고분자 필름의 물리적 특성에 대한 탄수화물 가수분해 효소 혼합체, 초음파, 그리고 방사선 처리의 효과)

  • Yang, Hee-Jae;Noh, Bong-Soo;Kim, Jae-Hun;Min, Sea-C.
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.30-38
    • /
    • 2011
  • Effects of depolymerization treatments of a carbohydrase mixture (CM), ultrasound, and irradiation on the physical properties of defatted mustard meal-based edible films (DMM films) were investigated. DMM hydrocolloids were added to CM (0.42% (w/w solution)), treated by ultrasound (500-700 W, 10-30 min) or ${\gamma}$-ray (40-100 kGy) to prepare film-forming solutions. Films were formed by drying. The CM treatment at 0.42% (w/w), pH 5.5, and 40-$50^{\circ}C$ with a 0.5 hr incubation time resulted in the highest colloidal stability in the film-forming solution. The depolymerization treatments did not dramatically change the water vapor permeability of the films. The solubility of the film decreased up to 53.1% by the CM treatment. The ultrasound treatment (700 W-30 min) decreased tensile strength and elongation. The ultrasound treatment (600 W-20 min) resulted in more compact and uniform structures of the films. Flavor profiles were differentiated by the power level and the time of the ultrasound treatment.