• Title/Summary/Keyword: Water treatment agent

Search Result 514, Processing Time 0.036 seconds

Improved Antitumor Efficacy of Hyaluronic Acid-Complexed Paclitaxel Nanoemulsions in Treating Non-Small Cell Lung Cancer

  • Kim, Joo-Eun;Park, Young-Joon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.411-416
    • /
    • 2017
  • Paclitaxel (PTX) is a effectively chemotherapeutic agent which is extensively able to treat the non-small cell lung, pancreatic, breast and other cancers. But it is a practically insoluble drug with water solubility less than $1{\mu}g/mL$, which restricts its therapeutic application. To overcome the problem, hyaluronic acid-complexed paclitaxel nanoemulsions (HPNs) were prepared by ionic complexation of paclitaxel (PTX) nanoemulsions and hyaluronic acid (HA) to specifically target non-small cell lung cancer. HPNs were composed of ${\small{DL}}-{\alpha}$-tocopheryl acetate, soybean oil, polysorbate 80, ferric chloride, and HA and fabricated by high-pressure homogenization. The HPNs were $85.2{\pm}7.55nm$ in diameter and had a zeta potential of $-35.7{\pm}0.25mV$. The encapsulation efficiency was almost 100%, and the PTX content was 3.0 mg/mL. We assessed the in vivo antitumor efficacy of the HPNs by measuring changes in tumor volume and body weight in nude mice transplanted with CD44-overexpressing NCI-H460 xenografts and treated with a bolus dose of saline, $Taxol^{(R)}$, PTX nanoemulsions (PNs), or HPNs at a dose of 25 mg/kg. Suppression of cancer cell growth was higher in the PN- and HPN-treated groups than in the $Taxol^{(R)}$ group. In particular, HPN treatment dramatically inhibited tumor growth, likely because of the specific tumor-targeting affinity of HA for CD44-overexpressed cancer cells. The loss of body weight and organ weight did not vary significantly between the groups. It is suggest that HPNs should be used to effective nanocarrier system for targeting delivery of non-small cell lung cancer overexpressing CD44 and high solubilization of poorly soluble drug.

An Immunohistochemical Study of Effects of Therapeutic Ultrasound on the Expression of VEGF and Substance-P in Muscle Contusion Injury (근타박상시 치료용 초음파가 혈관내피성장인자와 Substance-P 발현에 미치는 효과에 대한 면역조직화학적 연구)

  • Kim Yong-Su;Oh Jae-Young;Kim Souk-Boum
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.46-64
    • /
    • 2003
  • Therapeutic angiogenesis is the controlled induction or stimulation of new blood vessel formation to reduce unfavourable tissue effects caused by local hypoxia and to enhance tissue repair. Therapeutic ultrasound can be considered as a physical agent to deliver therapeutic angiogenesis. The purpose of this study was to evaluate the effect of therapeutic ultrasound after muscle contusion injury by observed immunoreactivity of vascular endothelial growth factor(VEGF) that plays an important role in angiogenesis and substance-P in pain transmission. Ultrasound irradiation(1MHz, $1W/cm^2$, continuous mode, treatment time 5 min) was applied through water submersion technique to 1 limb daily by kept off 5cm from muscle belly of gastrocnemius. The result of this study were as follows. 1. In morphological observation, there were no significant changes excepts of 7 days. At 7 days, granular tissue viewed abundantly in control group. In other groups, general feature were increased interspace of muscle fiber; centronucleated muscle fiber; collapsed of muscle and nerve tissue; appeared inflammatory cell. 2. The VEGF was expressed in interspace of muscle fiber. Especially, at 7 days in experimental group, VEGF was showed in connective tissue surrounding gastrocnemius muscle. 3. The VEGF was higher expressed in experimental group at 2 and 3 days, but in control group at 7 days. These data suggest therapeutic ultrasound enhanced production of VEGF in the early day relatively, therefore stimulated angiogenesis in the skeletal muscle induced contusion injury. Also therapeutic ultrasound may stimulate pain relief by diminish of substance-P in dorsal horn of spinal cord.

  • PDF

Efficiency Investigation of Vanishing Composting Machine Using Exhaust gas Recirculation system (배기가스순환시스템을 적용한 소멸 퇴비화장치의 효율검토)

  • Phae, Chae-Gun;Kim, Jong-Chan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.93-104
    • /
    • 1999
  • Existing composting system was improved to have a high performance for organic degradation, deodorization and energy reduction. Compared with conventional devices, this developed system uses the heat recovered from platinum catalytic tower by three times heat exchange in which 65% of exhaust gas was recirculated. Evaporation of water was made easy by maintaining negative pressure in entire system. It was possible for reaction to be maintained steadily by microorganism agent. The optimum mixing volume ratio of garbage to sawdust was 15:1 contrary to 20:1 in conventional one. Moreover, aerobic condition was maintained efficiently. Effects obtained by using a inner circulation system were as follows. It was possible to reduce the ammonia causing offensive odor and verified that consumption of electricity cut down to 1/3 with reduction of exhaust gas inflowing. According to this inner circulation, the optimum air flow was $0.44m^3$ to 100kg treatment capacity. The electricity consumption was changed in proportion to inflowing air volume.

  • PDF

Inhibitory effect of Scrophulariae Radix extract on $TNF-{\alpha},\;IL-1{\beta}$, IL-6 and Nitric Oxide production in lipopolysaccharide - activated Raw 264.7 cells (현삼메탄올 추출물이 LPS로 유도된 Raw 264.7 cell에서의 $TNF-{\alpha},\;IL-1{\beta}$, IL-6, 및 nitric oxide 생성에 미치는 영향)

  • Byun, Sung-Hui;Yang, Chae-Ha;Kim, Sang-Chan
    • The Korea Journal of Herbology
    • /
    • v.20 no.2
    • /
    • pp.7-16
    • /
    • 2005
  • Objectives : Scrophulariae Radix (SRE) is commonly used in combination with other herbs as a nutrient and health strengthening agent, and to remove 'heat' and replenish vital essence. The water-based extract of this herb can lower blood pressure in both anesthetized and concious animals, and exhibits an anti-inflammatory activity. But, there is lack of studies regarding the effects of SRE on the immunological activities in molecular levels. The present study was conducted to evaluate the effect of SRE on the regulatory mechanism of cytokines and nitric oxide (NO) in Raw 264.7 cells. Method : After the treatment of Scrophulariae Radix methanol extract, cell viability was measured by MTT assay, NO production was monitored by measuring the nitrite content in culture medium. COX-2 and iNOS were determined by Immunoblot analysis, and levels of cytokine were analyzed by sandwich immunoassays. Results : Results provided evidence that SRE inhibited the production of nitrite and nitrate (NO), inducible nitric oxide synthase (iNOS), $interleukin-1{\beta}\;(IL-1{\beta})$ and interleukin-6 (IL-6), and the activation of phospholylation of inhibitor ${\kappa}B{\alpha}\;(p-I{\kappa}B{\alpha})$ in Raw 264.7 cells activated with lipopolysaccharide (LPS). Conclusion : These findings suggest that Scrophulariae Radix can produce anti-inflammatory effect, which may playa role in adjunctive therapy in Gram-negative bacterial infections.

  • PDF

In Case of Treatment of PEC4 Hydroseeding Measures for Revegetation of Rock Cut-Slopes (암비탈면 녹화용 환경친화적 PEC4 공법의 시공)

  • Kim, Kyung-Hoon;Kim, Hak-Young;Hwang, Ae-Min;Lee, Seung-Eun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.4
    • /
    • pp.64-73
    • /
    • 1999
  • This study was conducted to find out the effects of hydroseeding material and seed mixture on the revegetation of rock cut-slopes by PEC4 (Polymer-Ecology-Control) Hydroseeding Measures. PEC4 hydroseeding material was applied to four cut-slopes using hydroseeding measures from April to August, 1999, and the field survey was carried out by monthly. PEC4 material consisted of bark compost and organic soil amendments. This material has high content of organic matter and high level of water holding capacity. PEC4 hydroseeding material shows low level of soil hardness, so it gives to good condition for seed germinating and plant growing in early stage. PEC4 material attached at rock cut-slopes by two types of adhesive agent was not eroded by rainfall. The plant coverage and number of plant species were affected by mixing ratio of seeds and seeding timing. From the viewpoint of plant establishment, the optimal hydroseeding timing of mixed seeds for plant growth seems to be in May. Most of the plant seeds were germinated well and they covered rock cut-slopes so quickly and effectively. Plant importance value of Silene armeria and Platycodon grandiflorum. were higher than any other seeded-native species in the competition between native species and exotic species, so they have enough possibility to be used for slope revegetation works. Thus it leads to conclusion that the revegetation method used in this experiment was a very effective method for plant establishment on rock cut-slopes.

  • PDF

Effects of Calcium Gluconate, a Water Soluble Calcium Salt on the Collagen-Induced DBA/1J Mice Rheumatoid Arthritis

  • Sohn, Ki Cheul;Kang, Su Jin;Kim, Joo Wan;Kim, Ki Young;Ku, Sae Kwang;Lee, Young Joon
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.290-298
    • /
    • 2013
  • This study examined the effects of calcium (Ca) gluconate on collagen-induced DBA mouse rheumatoid arthritis (CIA). A single daily dose of 200, 100 or 50 mg/kg Ca gluconate was administered orally to male DBA/1J mice for 40 days after initial collagen immunization. To ascertain the effects administering the collagen booster, CIA-related features (including body weight, poly-arthritis, knee and paw thickness, and paw weight increase) were measured from histopathological changes in the spleen, left popliteal lymph node, third digit and the knee joint regions. CIA-related bone and cartilage damage improved significantly in the Ca gluconate-administered CIA mice. Additionally, myeloperoxidase (MPO) levels in the paw were reduced in Ca gluconate-treated CIA mice compared to CIA control groups. The level of malondialdehyde (MDA), an indicator of oxidative stress, decreased in a dose-dependent manner in the Ca gluconate group. Finally, the production of IL-6 and TNF-${\alpha}$, involved in rheumatoid arthritis pathogenesis, were suppressed by treatment with Ca gluconate. Taken together, these results suggest that Ca gluconate is a promising candidate anti-rheumatoid arthritis agent, exerting anti-inflammatory, anti-oxidative and immunomodulatory effects in CIA mice.

Study on the Hepatoprotective Effect and Cytochrome P450 Regulation of Scutellaria Radix (황금의 간세포 보호활성 및 cytochrome P450 발현 조절에 관한 연구)

  • Ha, Ki-Tae;Jeong, Sang-Sin;Kim, Cheorl-Ho;Choi, Dall-Yeong;Kim, June-Ki
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.155-161
    • /
    • 2008
  • Carbon tetrachloride $(CCl_4)-induced$ liver injury depends on a toxic agent that has to be metabolized by the liver NAPDH-cytochrome P450 enzyme system to a highly reactive intermediate. Although several isoforms of cytochrome P450 may metabolize $CC1_4$, attention has been focused largely on the cytochrome P450 2E1 (CYP2E1), which is ethanol-inducible. Alternations in the activity of CYP2E1 affect the susceptibility to hepatic injury from $CC1_4$. In this study, the liver protective effect of the hot water extracts of Scutellaria radix (SR) was investigated. The SR exhibited a hepatoprotective activity against $CCl_4-induced$ liver damage in Chang liver cells. The expression of CYP2E1, measured by RT-PCR and Western blot analysis, was significantly decreased by SR treatment in Chang cells. Based on these findings, it is suggested that hepatoprotective effect of SR possibly related to downregulation of CYP2E1 expression.

Fabrication of Nano-composites from the Radix of Angelica gigas Nakai by Hot Melt Extrusion Mediated Polymer Matrixs (중합체 매개 용융압출에 의한 참당귀 나노복합체의 제조)

  • Azad, Md Obyedul Kalam;Cho, Hyun Jong;Lim, Jung Dae;Park, Cheol Ho;Kang, Wie Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.417-429
    • /
    • 2018
  • Background: The objective of this study was to make colloidal dispersions of the active compounds of radix of Angelica gigas Nakai that could be charaterized as nano-composites using hot melt extrusion (HME). Food grade hydrophilic polymer matrices were used to disperse these compound in aqueous media. Methods and Results: Extrudate solid formulations (ESFs) mediated by various HPMCs (hydroxypropyl methylcelluloses) and Na-Alg polymers made from ultrafine powder of the radix of Angelica gigas Nakai were developed through a physical crosslink method (HME) using an ionization agent (treatment with acetic acid) and different food grade polymers [HPMCs, such as HP55, CN40H, AN6 and sodium alignate (Na-Alg)]. X-ray powder diffraction (XRD) analysis confirmed the amorphization of crystal compounds in the HP55-mediated extrudate solid formulation (HP55-ESF). Differential scanning calorimetry (DSC) analysis indicated a lower enthalpy (${\Delta}H=10.62J/g$) of glass transition temperature (Tg) in the HP55-ESF than in the other formulations. Infrared fourier transform spectroscopy (FT-IR) revealed that new functional groups were produced in the HP55-ESF. The content of phenolic compounds, flavonoid (including decursin and decursinol angelate) content, and antioxidant activity increased by 5, 10, and 2 times in the HP55-ESF, respectively. The production of water soluble (61.5%) nano-sized (323 nm) particles was achieved in the HP55-ESF. Conclusions: Nano-composites were developed herein utilizing melt-extruded solid dispersion technology, including food grade polymer enhanced nano dispersion (< 500 nm) of active compounds from the radix of Angelica gigas Nakai with enhanced solubility and bioavailability. These nano-composites of the radix of Angelica gigas Nakai can be developed and marketed as products with high therapeutic performance.

Antioxidant therapy enhances pulpal healing in bleached teeth

  • Lima, Adriano Fonseca;Marques, Marcelo Rocha;Soares, Diana Gabriela;Hebling, Josimeri;Marchi, Giselle Maria;de Souza Costa, Carlos Alberto
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.1
    • /
    • pp.44-54
    • /
    • 2016
  • Objectives: The purpose of this study was to evaluate the histopathological effects of an antioxidant therapy on the pulp tissue of rat teeth exposed to a bleaching gel with 35% hydrogen peroxide. Materials and Methods: Forty rats were subjected to oral ingestion by gavage of distilled water (DW) or ascorbic acid (AA) 90 min before the bleaching therapy. For the bleaching treatment, the agent was applied twice for 5 min each to buccal surfaces of the first right mandibular molars. Then, the animals were sacrificed at 6 hr, 24 hr, 3 day, or 7 day post-bleaching, and the teeth were processed for microscopic evaluation of the pulp tissue. Results: At 6 hr, the pulp tissue showed moderate inflammatory reactions in all teeth of both groups. In the DW and AA groups, 100% and 80% of teeth exhibited pulp tissue with significant necrosis and intense tissue disorganization, respectively. At 24 hr, the AA-treated group demonstrated a greater regenerative capability than the DW group, with less intense inflammatory reaction and new odontoblast layer formation in 60% of the teeth. For up to the 7 day period, the areas of pulpal necrosis were replaced by viable connective tissue, and the dentin was underlined by differentiated odontoblast-like cells in most teeth of both groups. Conclusions: A slight reduction in initial pulpal damage during post-bleaching was promoted by AA therapy. However, the pulp tissue of AA-treated animals featured faster regenerative potential over time.

Reduction of perchlorate in aqueous solution using zero valence iron stabilized with alginate bead (알지네이트 비드를 이용하여 안정화한 0가 철의 수용액 상에서의 과염소산 이온의 환원 분해 특성)

  • Joo, Tae-Kyeong;Lee, Jong-Chol;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.560-565
    • /
    • 2010
  • Perchlorate ion ($ClO_4^-$) has been widely used as oxidizing agent in military weapon system such as rocket and missile fuel propellant. So it has been challenging to remove the pollutant of perchlorate ion. nanoscale zero valence iron (nZVI) particles are widely employing reduction catalyst for decomposition of perchlorate ion. nZVI particles has increasingly been utilized in groundwater purification and waste water treatment. But it have strong tendency of aggregation, rapid sedimentation and limited mobility. In this study, we focused on reduction of perchlorate ion using nZVI particles immobilized in alginate polymer bead for stabilization. The stabilized nZVI particles displayed much greater surface area, and much faster reaction rates of reduction of perchlorate ion. In this study, an efficient way to immobilize nZVI particles in a support material, alginate bead, was developed by using $Ca^{2+}$ as the cross-linking cations. The efficiency and reusability of the immobilized Fe-alginate beads on the reduction of perchlorate was tested at various temperature conditions.