• Title/Summary/Keyword: Water tension

Search Result 623, Processing Time 0.028 seconds

characteristics of Biosurfactant Produced by Pseudomonas sp. EL-G527 from Activated Sludge

  • Lim, Eun-Gyoung;Cha, Mi-Sun;Park, Geun-Tae;Son, Hong-Joo;Lee, Sang-Joon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.4
    • /
    • pp.221-225
    • /
    • 2000
  • Pseudomonas sp. EL-G527 was grown to produce a biosurfactant on 2% n-hexadecane as the energy and carbon source. This biosurfactant significantly reduced the surface tension of water from 72 to 28 dyne/cm at a critical micelle concentration(CMC) of 140 mg/l at pH 2.0. As the pH value decreased, the reduction in the surface tension due to the biosurfactant increased. The surface activity of the biosurfactant was unaffected when the NaCl concentration was increased to 5% and the calcium ion concentration increased to 100 mM, plus it remained stable at 10$0^{\circ}C$ for 180 min.

  • PDF

Study on the Stokes' Flow within a Three-Dimensional Cavity Considering Surface Characteristics (액체의 표면 특성을 고려한 3차원 캐버티 내부의 스톡스 유동 특성 연구)

  • Heo, Hyo-Weon;Jung, Won-Hyuk;Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.382-386
    • /
    • 2011
  • In this study, a CFD code is developed to perform simulation of the surface and internal flow of a three-dimensional rectangular cavity driven by an external gas flow. Investigated in this study are surface characteristic such as surface tension, surface dilational viscosity(or surface elasticity), and surface viscosity. Visualization of the surface of water is performed to compare with the numerical results obtained with the developed in-house code. We have found that the surface flow is very sensitive to the surface tension and other configurations. The surface flow velocity obtained from the numerical solution is lower than the experimental result.

  • PDF

A Study on Synthesis of Glycidol Based Nonionic Surfactant (글리시돌을 원료로 한 비이온 계면활성제 합성에 관한 연구)

  • Lim, Jong Choo;Kim, Byeong Jo;Choi, Kyu Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.282-291
    • /
    • 2012
  • The PGLE and PGLE3 nonionic surfactants were synthesized from the reaction between glycidol and lauryl acid and their structures were confirmed by $^1H$ and $^{13}C$ NMR analysis. The CMCs of PGLE and PGLE3 surfactants were found to be $3.59{\times}10^{-2}$ mol/L and $8.80{\times}10^{-2}$ mol/L respectively and the surface tensions at their CMC conditions were 26.09 mN/m and 28.68 mN/m respectively. Dynamic surface tension measurement has shown that the adsorption rate of surfactant molecules at the interface between air and surfactant solution was found to be relatively fast in both surfactant systems, presumably due to high mobility of surfactant molecules. The contact angles of PGLE and PGLE3 nonionic surfactants were $25.5^{\circ}$ and $9.5^{\circ}$ respectively. Dynamic interfacial tension measurement showed that both surfactant systems reached equilibrium in 20 minutes and the interfacial tensions at equilibrium condition in both systems were 0.42 mN/m and 0.53 mN/m respectively. The PGLE surfactant system has indicated higher foam stability than the PGLE3 surfactant system, which is consistent with surface tension measurement. The phase behavior experiments performed at $25{\sim}60^{\circ}C$ in systems containing nonionic surfactant, water, n-hydrocarbon oil and cosurfactant showed a lower phase or oil in water microemulsion in equilibrium with excess oil phase at all conditions investigated during this study.

Effect of Cosurfactant on Microemulsion Phase Behavior in NP7 Surfactant System (보조계면활성제가 NP7 계면활성제 시스템의 마이크로에멀젼 형성에 미치는 영향에 관한 연구)

  • Lim, HeungKyoon;Lee, Seul;Mo, DaHee;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.416-422
    • /
    • 2011
  • In this study, the effect of cosurfactant on the phase equilibrium and dynamic behavior was studied in systems containing NP7 nonionic surfactant solutions and nonpolar hydrocarbon oils. All cosurfactants used during this study such as n-pentanol, n-octanol and n-decanol acted as a hydrophobic additive and thus promoted the transition from an oil in water (O/W) microemulsion (${\mu}E$) in equilibrium with an excess oil phase to a three-phase region containing excess water, excess oil, and a middle-phase microemulsion and further to a water in oil (W/O) ${\mu}E$ in equilibrium with the excess water phase. The transition temperature was found to decrease with both increases in the chain length and amount of addition of a cosurfactant. Dynamic behavior studies under O/W ${\mu}E$ conditions showed that an oil drop size decreased with time due to the solubilization into micelles. On the other hand, both the spontaneous emulsification of water into the oil phase and the expansion of oil drop were observed under W/O ${\mu}E$ conditions because of the diffusion of surfactant and water into the oil phase. Under conditions of a three-phase region including a middle-phase ${\mu}E$, both the rapid solubilization and emulsification of the oil into aqueous solutions were found mainly due to the existence of ultra-low interfacial tension. Dynamic interfacial tension measurements have been found to be in a good agreement with dynamic behavior results.

Study on the Evaluation of the Tension and Contact Resistance of a 3 Φ 3 W Plug-In MCCB (3상 3선식 Plug-In MCCB의 인장력 및 접촉저항 평가에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.43-47
    • /
    • 2013
  • The purpose of this paper is to evaluate the performance of a Plug-In MCCB developed for rapid power supply restoration when the MCCB is installed in a power system and to verify its reliability. Since the developed 3 ${\Phi}$ 3 W Plug-In MCCB can be installed on and removed from a bus bar by one touch using a plug housed at the rear, it can be replaced in a short period of time. Therefore, it can quickly respond to the normalization of a power system. When the Plug-In MCCBB is installed on a bus bar, the resistance between each phase and plug was measured to be 0.46 $m{\Omega}$ in average. When the Plug-In MCCB is installed, the tension in the vertical direction was measured to be 112.78 N in average, which is greater than the tension of 50 N specified in the related regulation. The withstanding voltage tests performed 5 times repeatedly by applying 6 kV to the developed Plug-In MCCB for 60 seconds shows good withstanding voltage characteristics. In addition, both the general waterproof test using a water injection method and the insulation resistance analysis using a Mega meter showed good waterproof and insulation characteristics.

A Study of the Surface Tension of Some Electrolytic Solutions (몇가지 電解質溶液의 表面張力에 관한 硏究)

  • Sakong, Yull;Hwang, Jung-Euy;Son, Moo-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 1964
  • Relative surface tensions of aqueous solutions of KCl, KI and NaI have been measured at 25$^{circ}C$(30$^{circ}C$ for KCl) over a concentration range of 0.0001 to 3M solution. It was observed that there was a minimum in the surface tension-concentration curve for the extremely dilute solutions. Appearance of the minimum has been reported for the other salt solutions so far reported. At moderate and high concentration, these three salts increase the surface tension of water almost linearly as concentration increased, and behaved as a typical "capillary inactive substance", whereas they acted as a capillary active substance in very dilute solutions. Since the Onsager-Samaras equation for the surface tension as a function did not agree with the experimental data, the following empirical equations for the whole concentration range used were obtained. ${\sigma}_r\;=\;1\;+\;0.00072{\sqrt{c}}\;-\;0.0011c\;+\;0.023c^2\; for\;KCl\;at\;30^{\circ}C$ ${\sigma}_r\;=\;1\;+\;0.0077{\sqrt{c}}\;-\;0.0015c\;+\;0.024c^2\;for\;KI\;at\;25^{\circ}C$ ${\sigma}_r\;=\;1\;+\;0.00011{\sqrt{c}}\;-\;0.0090c\;+\;0.077c^2\;for\;NaI\;at\;25^{\circ}C$

  • PDF

Surface Active Properties and LCST Behavior of Oligo(propylene oxide-block-ethylene oxide) Allyl Ether Siloxane Surfactants in Aqueous Solution

  • Kim, Doo-Won;Lim, Chul-Hwan;Choi, Jae-Kon;Noh, Si-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1182-1188
    • /
    • 2004
  • Polydisperse oligo(PO-b-EO) allyl ether siloxane surfactants were synthesized by the hydrosilylation reaction of OMTS with Allyl-oligo(PO-b-EO) series. The surface tension of siloxane surfactants increased with increasing the EO chain length while it decreased with increasing the PO ratio. However, the sedimentation time of the aqueous solution showed opposite trend to the surface tension data. Both the surface tension and sedimentation time of the aqueous solution containing inorganic electrolyte gradually decreased as the content of inorganic electrolyte increased because of the surface arrangement of surfactant molecules. However, they increased with an increase of pH values due to the hydrolysis of the siloxane backbone. The $C_p$ values tended to increase with the increase in the EO chain length and decrease of the PO ratio. It seems that intermolecular interaction between PO/EO block copolymer and water affects the variation of transition temperature.

Corrosion effects on tension stiffening behavior of reinforced concrete

  • Shayanfar, M.A.;Ghalehnovi, M.;Safiey, A.
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.403-424
    • /
    • 2007
  • The investigation of corrosion effects on the tensile behavior of reinforced concrete (RC) members is very important in region prone to high corrosion conditions. In this article, an experimental study concerning corrosion effects on tensile behavior of RC members is presented. For this purpose, a comprehensive experimental program including 58 cylindrical reinforced concrete specimens under various levels of corrosion is conducted. Some of the specimens (44) are located in large tub containing water and salt (5% salt solution); an electrical supplier has been utilized for the accelerated corrosion program. Afterwards, the tensile behavior of the specimens was studied by means of the direct tension tests. For each specimen, the tension stiffening curve is plotted, and their behavior at various load levels is investigated. Average crack spacing, loss of cross-section area due to corrosion, the concrete contribution to the tensile response for different strain levels, and maximum bond stress developed at each corrosion level are studied, and their appropriate relationships are proposed. The main parameters considered in this investigation are: degree of corrosion ($C_w$), reinforcement diameter (d), reinforcement ratio (${\rho}$), clear concrete cover (c), ratio of clear concrete cover to rebar diameter (c/d), and ratio of rebar diameter to reinforcement percentage ($d/{\rho}$).

Wettability of Lubricant-Impregnated Electroplated Zinc Surface with Nanostructure (윤활유가 침지된 나노구조 전기아연도금층의 젖음성)

  • Jung, Haechang;Kim, Wang Ryeol;Jeong, Chanyoung;Lee, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • Electrodeposited zinc layer is widely used as a sacrificial anode for a corrosion protection of steel. In this study, we modified the surface of electrodeposited zinc to have a hydrophobicity, which shows various advanced functionalities, such as anti-corrosion, anti-biofouling, anti-icing and self-cleaning, due to its repellency to liquids. Superhydrophobicity was realized on electrodeposited zinc layer with a hydrothermal treatment, creating nanostructures on the surface, and following Teflon coating. The superhydrophobic surface shows a great repellency to water with high surface tension, while liquid droplets with low surface tension easily adhered on the superhydrophobic surface. However, immiscible lubricant-impregnated superhydrophobic surface shows a great repellency to various liquids, regardless of their surface tension. Therefore, it is expected that the lubricant-impregnated surface can be an alternative of superhydrophobic surface, which have a drawback for some liquids with a low surface tension.

Mercerization of Wood: Formation and Reversibility of Na-cellulose I in Reaction Wood

  • Kim, Nam-Hun;Kim, Dae-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • The phase transformation from cellulose I into cellulose II in woods by way of Na-cellulose I was examined by x-ray diffraction analysis.The formation of Na-cellulose I in woods increased with the increase of treating time in alkali solution. When compression wood was treated with 20% NaOH solution at room temperature for 1 day, the x-ray diagram showed only Na-cellulose I. On the other hand, the x-ray diagram of tension wood showed a mixture of cellulose I and Na-cellulose I. Cellulose I of tension wood could not be transformed completely into Na-cellulose I even after 10-day treatment, but was transformed into Na-cellulose I after 30-day treatment. Na-cellulose I of compression and tension woods was converted to the cellulose I pattern and the mixture of cellulose I and cellulose II, respectively, after washing with water and drying at 20℃. Cellulose I regenerated from Na-cellulose I in wood could not be converted to cellulose II by delignification. Thus, it revealed that the delignification of the alkali-treated wood did not affect their cellulose structures. From the results, therefore, it can be concluded that lignin in woods prevents the formation of the stable Na-cellulose I and the conversion from cellulose I to cellulose II. This means that the conversion of chain polarity of wood cellulose hardly occurs during mercerization because cellulose microfibrils are fixed by lignin which not to be intermingled.