• Title/Summary/Keyword: Water tension

Search Result 624, Processing Time 0.029 seconds

Surface Tension Change of Simulant Gel Propellant according to the Metal Particle Addition (금속입자 첨가에 따른 모사젤 추진제의 표면장력 변화)

  • Kim, Kyehwan;Kim, Sijin;Han, Seungjoo;Kim, Jinkon;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.34-40
    • /
    • 2017
  • In this study, the surface tension of simulant gel propellants was measured by Du $No{\ddot{u}}y$ ring method. The variation of the surface tension was investigated with respect to the amount of the gelling agent, and metal particle addition. Distilled water was used as the base fluid for the preparation of the simulant gel propellant where Carbopol 941 was used as a gelling agent and SUS304 spherical metal particles (mean diameter : 100 nm) as simulant energetic particles. As a result of measurements, surface tension increased with increasing gelling agent concentration while, in the presence of metal particle, different behavior of surface tension has been observed.

Experimental and numerical study on coupled motion responses of a floating crane vessel and a lifted subsea manifold in deep water

  • Nam, B.W.;Kim, N.W.;Hong, S.Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.552-567
    • /
    • 2017
  • The floating crane vessel in waves gives rise to the motion of the lifted object which is connected to the hoisting wire. The dynamic tension induced by the lifted object also affects the motion responses of the floating crane vessel in return. In this study, coupled motion responses of a floating crane vessel and a lifted subsea manifold during deep-water installation operations were investigated by both experiments and numerical calculations. A series of model tests for the deep-water lifting operation were performed at Ocean Engineering Basin of KRISO. For the model test, the vessel with a crane control system and a typical subsea manifold were examined. To validate the experimental results, a frequency-domain motion analysis method is applied. The coupled motion equations of the crane vessel and the lifted object are solved in the frequency domain with an additional linear stiffness matrix due to the hoisting wire. The hydrodynamic coefficients of the lifted object, which is a significant factor to affect the coupled dynamics, are estimated based on the perforation value of the structure and the CFD results. The discussions were made on three main points. First, the motion characteristics of the lifted object as well as the crane vessel were studied by comparing the calculation results. Second, the dynamic tension of the hoisting wire were evaluated under the various wave conditions. Final discussion was made on the effect of passive heave compensator on the motion and tension responses.

A Study on Low Temperature Properties of Kaolin-Phosphate-Water Systems (카올린-인산염-물계의 저온 특성에 관한 연구)

  • 박금길;박근원
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.3
    • /
    • pp.192-200
    • /
    • 1981
  • This study deals with the low temperature ($25^{\circ}C$-$600^{\circ}C$) properties of Kaolin-Phosphate-water systems. Phosphoric acid, mono aluminum phosphate, mono ammonium phosphate, the mixture of phosphoric acid and mono aluminum phosphate, and the mixture of phosphoric acid and mono ammonium phosphate were used to characterize the M.O.R. of the systems with to quantity of phosphates, curing time, and firing temperature. Firing shrinkage, viscosity, surface tension, DTA, TGA, and X-ray diffraction patterns were also measured in order to investigated the factors of strengthening. The results of this study were summarized as follows: 1. The M.O.R. of kaolin-phosphate systems were stronger than that of Kaolin-water system at room temperature or low temperature($25^{\circ}C$-$600^{\circ}C$). Though it was increased according to the longer curing time, the higher temperature, and the more addition of phosphate, the M.O.R. were decreased in the case of 10 wt% phosphate addition in the system of phosphoric acid, mono aluminum phosphate and phosphoric acid-mono aluminum phosphate. 2. When the concentration of Phosphate was at 4 wt%, the M.O.R. of specimen cured at $25^{\circ}C$ and added to the phosphoric acid was strongest among the specimens in added to the others phosphates. Whereas, when the concentration of phosphate was above 6wt%, the M.O.R. of specimen cured at $25^{\circ}C$ and added to the phosphoric acid mono ammonium phosphate system cured at $25^{\circ}C$ was the strongest. 3. The M.O.R. of the specimen heated, in the temperature range of 15$0^{\circ}C$-1$600^{\circ}C$, and added to the mixture of phosphoric acid-mono aluminum phosphate system or phosphoric acid-mono ammonium phosphate system was stronger than that of specimen added to Phosphoric acid, mono-aluminum Phosphate or mono-ammonium phosphate alone. 4. The bonding force of phosphate binders was more closely related to surface tension than viscosity and it tended to be inversely proportional to surface tension. The bonding force after heating treatment seemed to be caused by the change of structure of phosphate according to heating.

  • PDF

Comparison of Disk Tension Infiltrometer and van Genuchten-Mualem Model on Estimation of Unsaturated Hydraulic Conductivity (장력 침투계(Disk Tension Infiltrometer)와 van Genuchten-Mualem 모형 적용에 따른 불포화수리 전도도의 비교 해석)

  • Hur, Seung-Oh;Jung, Kang-Ho;Park, Chan-Won;Ha, Sang-Keun;Kim, Geong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.259-267
    • /
    • 2006
  • Hydraulic conductivity is the rate of water flux on hydraulic gradient. The van Genuchten Mualem (VGM) model is frequently used for describing unsaturated state of soils, that is composed with the function of soil water potential and soil water content and requests various parameters. This study is to get the value of VGM parameters used Rosetta computer program based on neural network analysis method and to calculate VGM parameters. VGM parameters included Ko(effective saturated hydraulic conductivity), ${\theta}r$(residual soil water content), ${\theta}s$(saturated soil water content), L, n and m. The unsaturated hydraulic conductivity at 10 kPa was calculated by using Rosetta program. Unsaturated hydraulic conductivities of 17 soil series at 1, 3, 5, 7 kPa were also obtained by applying saturated hydraulic conductivity by disk tension infiltrometer based on Gardner and Wooding's equation. Water flow at the water potential of 3 kPa was very low except Namgye, Hagog, Baegsan, Sangju, Seogcheon, Yesan soil series. Unsaturated hydraulic conductivity at 1 kPa showed the highest value for Samgag soil series and was in order of Yesan, Hwabong, Hagog and Baegsan soil series. Those of Gacheon, Seocheon and Ugog soil series were very low. When the value by VGM was compared with the value by disc tension infiltrometer, there was a tendency with exponential function to soils without gravel but there was no tendency to soils including gravel. Conclusively, it would be limited that VGM model for unsaturated hydraulic conductivity analysis applies to Korean agricultural land including gravel and having steep slope, shallow soil depth.

High Transparent Planar Dipole Antenna using Ionized Salt-water of ASA Structure (이온화된 소금물을 이용한 ASA 구조의 고 투명 평면형 다이폴 안테나)

  • Phan, Duy Tung;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.492-498
    • /
    • 2021
  • This feasibility study evaluated an optically transparent planar antenna using liquid salt-water as the conducting material. The most significant reason behind using liquid salt-water for transparent antenna applications is its excellent average optical transparency (OTav) (> 95% at a salinity of 40 ppt) compared to other typical solid transparent thin-film electrodes, such as indium tin oxide (ITO:> 73%) or multi-layer films (MLF: > 78%). Each conductive arm of the proposed dipole is constructed from a salt-water layer held between two clear planar acrylic layers (��r = 2.61, tan�� = 0.01, OTav > 90%) (acrylic/salt-water/acrylic; ASA) due to surface tension. To examine the electrical and optical properties of the ASA structure, the surface tension was measured to determine the thickness of the salt-water layer that finalized its sheet resistance and OTav. The average gain and efficiency of the antenna were 1.72 dBi and 74%, respectively, in the operating UHF (Ultra high frequency) band (470-771 MHz). Therefore, the proposed antenna can be a good candidate for applications as a transparent planar antenna using salt-water.

Studies on the Mackerel Purse Seine Operation in the Sea Area of Cheju Island - 1 . Model Experiment on the Changes of Net Shape in Stagnant Water - (제주도 주변해엽 고등어 포착망의 연구 - 1 . 정수에 있어서 망형 변화에 관한 모형실험 -)

  • 박정식
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.2
    • /
    • pp.7-15
    • /
    • 1986
  • In order to investigate the performance for the mackerel purse seine of one boat purse seiner using in the sea area of Cheju Island, a model net is made of the scale of 1/400 of its full scale, and model test on the shape of net and the tension of purse line is carried out in the stagnant water channel of the circulating water tank. Designing and testing for the model net are based on the Tauti's law. The obtained results are as follows; 1. The sinking rate of net is maximized the value of 6.40 m/min from 5 to 10 minutes after shooting net, and the mean value is 6.13 m/min. 2. The enclosed area formed with the float line after pursing operation is 76-84% of the area which is formed immediately after the shooting operation. At that time, purse seine is pulled inward the circle of surrounding net about 26.5% of the diameter. 3. In operating, when longitudinal section area of the central part of the net is maximized, the split area of both the wing-ends is 31-32% of the former. 4. When the time for the completing of pursing is 20 minutes, the maximum tension of the purse line is about 10.2 tons.

  • PDF

Self-Alignment and Bonding of Microparts Using Adhesive Droplets

  • Sato, Kaiji;Lee, Keun-Uk;Nishimura, Masahiko;Okutsu, Kazutoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.75-79
    • /
    • 2007
  • This paper describes the self-alignment and bonding of microparts using adhesive surface tension to assemble microsystems in air. The alignment and bonding were tested experimentally using adhesive droplets, and the resulting performance was evaluated. The adhesive, which was inorganic and water-soluble before hardening, was diluted with water to a ratio of 10:1 so that its surface tension generated a sufficient restoring force for self-alignment. The experimental results showed that the average of the alignment errors obtained using the adhesive on $1.0\times1.0\times0.15-mm$ microparts was less than $2{\mu}m$ in the X and Y directions and 0.2 degrees in the e direction. These alignment errors were almost the same as those obtained using water. The use of a suitable adhesive had no negative effects on the alignment accuracy. The average tensile strength of the adhesive bond after self-alignment was $0.61N/mm^2$.

The Effect of the Deformation on the Sensitivity of a Flexible PDMS Membrane Sensor to Measure the Impact Force of a Water Droplet (액적의 충격력 측정을 위한 유연 멤브레인 센서의 PDMS 변형에 의한 민감도의 영향)

  • Kang, Dong Kwan;Lee, Sangmin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.16-21
    • /
    • 2022
  • This study investigates the effect of the deformation on the sensitivity of a flexible polydimethylsiloxane (PDMS) membrane sensor. A PDMS membrane sensor was developed to measure the impact force of a water droplet using a silver nanowire (AgNW). The initial deformation of the membrane was confirmed with the application of a tensile force (i.e., tension) and fixing force (i.e., compressive force) at the gripers, which affects the sensitivity. The experimental results show that as the tension applied to the membrane increased, the sensitivity of the sensor decreased. The initial electrical resistance increased as the fixing force increased, while the sensitivity of the sensor decreased as the initial resistance increased. The movement of the membrane due to the impact force of the water droplet was observed with a high-speed camera, and was correlated with the measured sensor signal. The analysis of the motion of the membrane and droplets after collision confirmed the periodic movement of not only the membrane but also the change in the height of the droplet.

Shape of the model pound net affected by wave and fish behavior to the net - Shape and tension of the model pound net affected by wave - (파동에 의한 모형정치망의 형상변화와 어류대망행동 - 파동에 의한 모형정치망의 형상과 장력변화 -)

  • Lee, Ju-Hee;Kwon, Byeong-Guk;Yun, Il-Bu;Kim, Sam-Kon;Yoo, Je-Bum;Kim, Boo-Young;Kim, Byung-Soo;Lee, Hye-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.2
    • /
    • pp.101-115
    • /
    • 2007
  • The pound net fishery is very important one in Korean coastal fishery and it need to grasp the characteristics of the net affected by many factors. It is considered that the structure and the shape of the pound net can be changed by the direction and speed of current, wave height, depth and conditions of sea bed. However, most of all, the speed of current and wave height influence more upon the pound net than any other factors to deform and flutter. In this study, author carried out the experiments with a model of double one-side pound net made by the similarity law as 1:100 scales at a real experimental area, and additionally the model net experiments were conducted in the circulating water channel in Pukyong National University. The author analyzed the data of transformation of shape and tension of the model pound net to recognize the characteristics of the current and wave acting on it. Regardless of the direction of flow affecting on the fish court net or bag net, the deformed angle and depth to the side panel and bottom of box nets becomes bigger as the wave gets higher and the period of wave is faster. The tension in both upward or downward tends to be changed by the speed of wave. Those value of changes occurred similarly in either fish court net or bag net. Generally, when bag net is located at upward of flow, the value of tension was bigger 10% than any other location or nets. Regardless of the setting direction, the tension of the pound net is increased in proportion to flow speed, wave height and period of wave, and it becomes bigger about 15-30% at upward to flow than downward. Where the flow is upward in the court net, the tension in the wave increased to 37% compared to the one in the flow only in the condition of flow of 0.1-0.3m/s. Where the flow is upward in the bag net, the tension in the wave increased to 52% in the flow of 0.1m/s, and the tension increased to 48% in the flow of 0.2-0.3m/s.

Behavior of Mooring Line of Silt Protector According to the Change of Sea Level (조위변화에 따른 오탁방지막 계류라인의 거동)

  • 홍남식;김정윤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.3
    • /
    • pp.232-239
    • /
    • 2002
  • This paper studies the behavior of mooring line of silt protector according to the change of sea level. It is found from the analysis of the behavior that if the taut cable length has been determined appropriately within the range of safety factor, the tensioned cable has almost constant tension regardless of the water depth. The whole structure, however, becomes unstable due to the loss (zero tension) of the released cable tension. It is also recognized from the investigation for the effect of intial straight line angle on the behavior of mooring line that the design through the conceptually combined consideration of the cable tension, total scope and buoy deflection has to be required in the mooring analysis. Finally, the material of cable is not damaged because the cable tension is reduced by attached shellfish, but the whole structure may be also unstable by the effect on the anchor angle, total scope and buoy deflection.