• Title/Summary/Keyword: Water temperature stress

Search Result 652, Processing Time 0.025 seconds

Stress in Olive Flounder (Paralichthys olivaceus) and Fat Cod (Hexagrammos otakii) by the Sudden Drop and Rise of Water Temperature (수온의 급하강과 급상승이 넙치 (Paralichthys olivaceus)와 쥐노래미(Hexagrammos otakii)에 미치는 스트레스)

  • CHANG Young Jin;HUR Jun Wook;LIM Han Kyu;LEE Jong Kwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.2
    • /
    • pp.91-97
    • /
    • 2001
  • The effects of sudden changes of water temperature (WT) on the stress response and physiological change of the cultured olive flounder in large (FL) and small (FS) size, and fat cod (FC) were examined by manipulating WT (2 types) in a flow through seawater culture system with 6 tanks (water vol. 270 L/tank). The WT was decreased from $20^{\circ}C$ to $10^{\circ}C$ within 5 hours ($2^{\circ}C/hour$) and maintained at $10^{\circ}C$ for 21 hours (Exp. I), and it was raised from $20^{\circ}C$ to $30^{\circ}C$ within 5 hours and maintained at $30^{\circ}C$ for 21 hours (Exp.II). In Exp. I, the levels of blood hematocrit at 5 hours ($10^{\circ}C$) in FS was significantly decreased from $13.5\pm2.0\%\;to\;11.3\pm2.3\%$, but FC at 2.5 hours ($15^{\circ}C$) ($19.0\pm0.3\%\;to\;23.2\pm3.8\%$) was increased, The blood hemoglobin concentration of all fish in Exp, II was significantly increased until 8 hours after raising WT from $20^{\circ}C$ to $30^{\circ}C$. In Exp. I and II , the levels of plasma cortisol in FL, FS and FC was changed from $5.2\pm8.5ng/mL,\;4.4\pm4.5ng/mL\;and\;2.7\pm0.4ng/mL$, respectively, before sudden drop and rise of WT. The levels of plasma cortisol of in FL ($164.0\pm53.1ng/mL$) and FC ($207.9\pm25.4ng/mL$) were significantly increased by the lowering WT sharply during whole experiment. The FL ($12.6\pm2.0ng/mL$) and FS ($4.0\pm3.9ng/mL$) showed no significant differences in cortisol level according to sudden rise of WT (5 hours). But it in FC ($44.7\pm18.2ng/mL$) was increased. In Exp. I, the plasma glucose levels of all fish groups were decreased after 5 hours ($10^{\circ}C$), The plasma lactic acid concentration of FL and FS showed no significant differences until 5 hours after raising WT from $20^{\circ}C$ to $30^{\circ}C$, But it in FC was significantly increased with WT raise.

  • PDF

Assessing the Sensitivity of Runoff Projections Under Precipitation and Temperature Variability Using IHACRES and GR4J Lumped Runoff-Rainfall Models (집중형 모형 IHACRES와 GR4J를 이용한 강수 및 기온 변동성에 대한 유출 해석 민감도 평가)

  • Woo, Dong Kook;Jo, Jihyeon;Kang, Boosik;Lee, Songhee;Lee, Garim;Noh, Seong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.43-54
    • /
    • 2023
  • Due to climate change, drought and flood occurrences have been increasing. Accurate projections of watershed discharges are imperative to effectively manage natural disasters caused by climate change. However, climate change and hydrological model uncertainty can lead to imprecise analysis. To address this issues, we used two lumped models, IHACRES and GR4J, to compare and analyze the changes in discharges under climate stress scenarios. The Hapcheon and Seomjingang dam basins were the study site, and the Nash-Sutcliffe efficiency (NSE) and the Kling-Gupta efficiency (KGE) were used for parameter optimizations. Twenty years of discharge, precipitation, and temperature (1995-2014) data were used and divided into training and testing data sets with a 70/30 split. The accuracies of the modeled results were relatively high during the training and testing periods (NSE>0.74, KGE>0.75), indicating that both models could reproduce the previously observed discharges. To explore the impacts of climate change on modeled discharges, we developed climate stress scenarios by changing precipitation from -50 % to +50 % by 1 % and temperature from 0 ℃ to 8 ℃ by 0.1 ℃ based on two decades of weather data, which resulted in 8,181 climate stress scenarios. We analyzed the yearly maximum, abundant, and ordinary discharges projected by the two lumped models. We found that the trends of the maximum and abundant discharges modeled by IHACRES and GR4J became pronounced as changes in precipitation and temperature increased. The opposite was true for the case of ordinary water levels. Our study demonstrated that the quantitative evaluations of the model uncertainty were important to reduce the impacts of climate change on water resources.

Effects of Tropical Climate on Reproduction of Cross- and Purebred Friesian Cattle in Northern Thailand

  • Pongpiachan, P.;Rodtian, P.;Ota, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.952-961
    • /
    • 2003
  • In the first part of the study, rates of estrus occurrence and success of A.I. service in the Thai-native and Friesian crossbred, and purebred Friesian cows fed in the National Dairy Training and Applied Research Institute in Chiang Mai, Thailand were traced monthly throughout a year. An electric fan and a water sprinkler cooled the stall for the purebred cows during the hot season (March-September). Both rates in pure Friesians were at their highest in the cold-dry season (October- February), but they decreased steadily during the hot-dry season (March-May) and were at their lowest in the hot-wet season (June-September). Seasonal change of a similar pattern was observed in the incidence of estrus, but not in the success rate of insemination in the crossbred cows. By the use of reproductive data, compiled in the same institute, on the 75 % cross- and purebred Friesian cows, and climatological data in Chiang Mai district, effects of ambient temperature and humidity on the reproductive traits of cows were examined by regression analysis in the second half of the study. Significant relationships in the crossbred, expressed by positive-linear and parabola regressions, were found between reproductive parameters such as days to the first estrus (DTFE), A.I. service (DTFAI), and conception, the number of A.I. services required for conception and some climatic factors. However, regarding this, no consistent or intelligible results were obtained in purebred cows, perhaps because electric fans and water sprinklers were used for this breed in the hot season. Among climatic factors examined, the minimum temperature (MINT) in early lactation affected reproductive activity most conspicuously. As the temperature during one or two months prior to the first estrus and A.I. service rose, DTFE and DTFAI steadily became longer, although, when MINT depleted below $17-18^{\circ}C$, the reproductive interval tended to be prolonged again on some occasions. The maximum temperature also affected DTFE and DTFAI, but only in limited conditions. The effect of humidity was not clear, although the inverse relationship between DTFE and minimum humidity during 2 months before the first estrus in the crossbred seemed to be significant. Failure to detect any definite effect of climate on the reproductive traits of pure Friesians seemed to indicate that forced ventilation by electric fans and water sprinklers were effective enough to protect the reproductive ability of this breed from the adverse effects of a hot climate.

Changes in expression of monocarboxylate transporters, heat shock proteins and meat quality of Large White Yorkshire and Ghungroo pigs during hot summer period

  • Parkunan, Thulasiraman;Das, Arun K.;Banerjee, Dipak;Mohanty, Niharika;Paul, Avishek;Nanda, P.K.;Biswas, TK;Naskar, Syamal;Bag, Sadhan;Sarkar, Mihir;Mohan, Narayana H.;Das, Bikash Chandra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.246-253
    • /
    • 2017
  • Objective: Present study explores the effect of hot summer period on the glycolytic rate of early post-mortem meat quality of Ghungroo and Large White Yorkshire (LWY) pig and comparative adaptability to high temperature between above breeds by shifting the expression of stress related genes like mono-carboxylate transporters (MCTs) and heat shock proteins (HSPs). Methods: Healthy pigs of two different breeds, viz., LYW and Ghungroo (20 from each) were maintained during hot summer period (May to June) with a mean temperature of about $38^{\circ}C$. The pigs were slaughtered and meat samples from the longissimus dorsi (LD) muscles were analyzed for pH, glycogen and lactate content and mRNA expression. Following 24 h of chilling, LD muscle was also taken from the carcasses to evaluate protein solubility and different meat quality measurements. Results: LWY exhibited significantly (p<0.01) higher plasma cortisol and lactate dehydrogenase concentration than Ghungroo indicating their higher sensitivity to high temperature. LD muscle from LWY pigs revealed lower initial and ultimate pH values and higher drip loss compared to Ghungroo, indicating a faster rate of pH fall. LD muscle of Ghungroo had significantly lower lactate content at 45 min postmortem indicating normal postmortem glycolysis and much slower glycolytic rate at early postmortem. LD muscle of LWY showed rapid postmortem glycolysis, higher drip loss and higher degrees of protein denaturation. Ghungroo exhibited slightly better water holding capacity, lower cooking loss and higher protein solubility. All HSPs (HSP27, HSP70, and HSP90) and MCTs (MCT1, MCT2, and MCT4) in the LD muscle of pigs inclined to increase more in Ghungroo than LWY when exposed to high temperature. Conclusion: Effect of high temperature on the variation of HSPs and MCTs may play a crucial role in thermal tolerance and adaptation to different climatic conditions, pH regulation, muscle acidification, drip loss, protein denaturation and also in postmortem meat quality development.

Effects of Elevated CO2 Concentration and Temperature on Physiological Characters of Liriodendron tulipifera (CO2농도 및 온도 상승이 백합나무의 생리적 특성에 미치는 영향)

  • Lee, Ha-Soo;Lee, Solji;Lee, Jae-Cheon;Kim, Ki Woo;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.145-152
    • /
    • 2013
  • This study aimed to investigate the growth and physiological characters of Liriodendron tulipifera seedlings in responses to two different levels of elevated air temperature and $CO_2$ concentration. The seedlings were grown in environment-controlled growth chambers with two combinations of air temperature and $CO_2$ conditions: (1) $22^{\circ}C$ + ambient $CO_2$ $380{\mu}mol\;mol^{-1}$ and (2) $27^{\circ}C$ + $770{\mu}mol\;mol^{-1}$. Physiological characters such as growth, photosynthesis, and water use efficiency, were monitored for 85 days. The seedlings under the elevated treatment showed a greater amount of growth in tree height, compared with those under the control. Regarding the characteristics of assimilatory organs, the elevated treatment resulted in a greater amount of total leaf area, leaf unfolding, and dry weight per leaf area. No significant differences were found in photosynthesis capacity between the two treatments. The increase in water use efficiency with increased intercellular $CO_2$ partial pressure appeared overall lower in the seedling under the elevated treatment, compared with those under the control. The total leaf area of the seedlings under the elevated treatment was larger than that under the control, indicating a higher amount of photosynthesis. In addition, an increase of root growth was noted under the elevated treatment. A resistance mechanism of water stress may be attributed to a higher amount of organ growth as well as the tree height under the elevated treatment than the control.

Effects of Heating Temperature and Time, Salt and pH on the Texture and Color Characteristics of Whole Egg Gel (계란찜의 텍스쳐와 색에 미치는 가열온도와 시간, pH 및 소금의 영향)

  • 김경미;김종군;김주숙;김우정
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.2
    • /
    • pp.163-170
    • /
    • 2004
  • Effect of several factors for Preparation of whole egg gel (WEG) on texture and color of WEG were investigated in this study. The factors studied were amount of water addition, heating temperature and time, pH and NaCl. The whole egg gel was prepared by mixing of whole egg and steaming at 100$^{\circ}C$ for 7 min followed by cooling at 22$^{\circ}C$ for 90 min. The results showed that the increase in water addition decreased significantly with viscosity values of whole egg solution (WES) and the addition of more than 50% water resulted in a significant decrease in the stress at failure (SF) and the hardness of WEG. The color a and b values of WES decreased and the value of WEG also decreased significantly in negative range. The increase in heating temperature decreased the coagulation time and increased in SF while SF decreased. Addition of NaCl up to 1.3% resulted a significant increase in SF and hardness and a little changes in color of WEG. As the pH of WES changed from 4.0 to 10.0, the viscosity of WES was minimal and SF and hardness were maximal at pH 6.0. The L and b values of WEG were significantly reduced at higher pH values of 8.0.

Effect of Wear Environments on the High Stress Sliding Wear Behavior of Ni-base Deloro 50 Alloy (Ni계 Deloro 50합금의 고하중 Sliding 마모거동에 미치는 마모환경의 영향)

  • Choi, Jin-Ho;Choi, Se-Jong;Kim, Jun-Gi;Kim, Yong-Deog;Kim, Hak-Soo;Mun, Ju-Hyun;Baek, Ha-Chung;Lee, Duck-Hyun;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1115-1120
    • /
    • 1998
  • The sliding wear behavior of Ni-base hardfacing alloy, Deloro 50, was investigated at the contact stresses of 15ksi and 30ksi under the various wear environments. In air at room temperature, Deloro 50 showed lower wear resistance than Stellite 6 even at 15ksi due to the occurrence of severe adhesive wear. This seems to be caused by the lower hardness and work- hardening rate of Deloro 50 than those of Stellite 6. In water at room temperature, Deloro 50 showed as good wear resistance as Stellite 6 at 15ksi. It was considered to be due to that water could effectively prevent metal to metal contact through contacting asperities. However, Deloro 50 showed severe adhesive wear at 30ksi in water at room temperature. It seems to be that the water could not suppress adhesion wear at 30ksi. At $300^{\circ}C$ in air, Deloro 50 exhibited higher wear resistance than Stellite 6 even at 30ksi. It was considered that the oxide glaze layers formed on wear surface during sliding, effectively prevented direct metal-to-metal contacts.

  • PDF

Cryopreservation and low-temperature storage of seeds of Phaius tankervilleae

  • Hirano, Tomonari;Godo, Toshinari;Miyoshi, Kazumitsu;Ishikawa, Keiko;Ishikawa, Masaya;Mii, Masahiro
    • Plant Biotechnology Reports
    • /
    • v.3 no.1
    • /
    • pp.103-109
    • /
    • 2009
  • In this study we established reliable methods for conservation of seeds of Phaius tankervilleae as an orchid genetic resource. The seeds, which were dehydrated to 5% water content and preserved at $4^{\circ}C$, showed no decrease in viability and germinability after three months. After storage for six months, however, the seeds showed a drastic decrease in germinability, even though survival rate was high. For long-term preservation of seeds of P. tankervilleae, cryopreservation is applied to the freshly harvested seeds. When the seeds were cryopreserved by the vitrification method for up to 12 months there was no apparent deterioration effect of storage time. These results indicate that cryopreservation by the vitrification method is useful for long-term conservation of P. tankervilleae seeds, which are difficult to preserve for more than three months under dry and low-temperature conditions.

Study on the Breakdown Performance of Synthetic Polypropylene Laminated Paper for Application of a HTS Cable (고온초전도 케이블의 응용을 위한 PPLP의 절연파괴 특성연구)

  • Kwag, Dong-Soon;Kim, Young-Seok;Kim, Hae-Jong;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.65-68
    • /
    • 2003
  • In this paper, we researched breakdown characteristics of paper/liquid nitrogen composite insulation system for application of a high temperature superconducting cable. And, we have studied the AC breakdown performance of paper/ice composite insulating system immersed in liquid nitrogen. The electric strength in this paper/ice composite system is higher than that of paper/liquid nitrogen system. Furthermore this system shows a self-healing type breakdown behavior. Among the many kinds of liquid to be immersed and frozen to the ice, deionized water gives the highest electric breakdown strength. The paper/ice composite insulation system is thought to be one of good candidate for the electrical insulating system at cryogenic temperature.

  • PDF

Characteristics of Defects in SiOx Thin films on Ethylene Terephthalate by High-temperature E-beam Deposition (고온 전자빔 증착에 의한 Ethylene Terephthalate상의 SiOx 박막의 특성 평가)

  • Han Jin-Woo;Kim Young-Hwan;Kim Jong-Hwan;Seo Dae-Shlk;Moon Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.71-74
    • /
    • 2006
  • In this paper, we investigated the characterization of silicon oxide(SiOx) thin film on Ethylene Terephthalate(PET) substrates by e-beam deposition for transparent barrier application. The temperature of chamber increases from $30^{\circ}C$ to $110^{\circ}C$, the roughness increase while the Water vapor transmission rate (WVTR) decreases. Under these conditions, the WVTR for PET can be reduced from a level of $0.57 g/m^2/day$ (bare subtrate) to $0.05 g/m^2/day$ after application of a 200-nm-thick $SiO_2$ coating at 110 C. A more efficient way to improve permeation of PET was carried out by using a double side coating of a 5-${\mu}m$-thick parylene film. It was found that the WVTR can be reduced to a level of $-0.2 g/m^2/day$. The double side parylene coating on PET could contribute to the lower stress of oxide film, which greatly improves the WVTR data. These results indicates that the $SiO_2$ /Parylene/PET barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.