• Title/Summary/Keyword: Water supplying method

Search Result 69, Processing Time 0.026 seconds

Growth of Mungbean Sprouts and Commodity Temperature as Affected by Water Supplying Methods (관수방식에 따른 숙주나물의 생장과 품온 변화)

  • Kang Jin Ho;Ryu Yeong Seop;Yoon Soo Young;Jeon Seung Ho;Jeon Byong Sam
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.6
    • /
    • pp.487-490
    • /
    • 2004
  • Methods for culturing bean sprouts could be divided into two main groups of overspraying and underwatering according to water supplying. The study was done to measure the effect of water supplying method on growth of mungbean sprouts and temperatures inside their culture boxes. The morphological characters, fresh and dry weights were measured on the 6th day after culturing, but temperatures of the boxes were recorded daily by dataloggers. Lateral roots was not formed in the under-watering method (UM) while partially done in the over-spraying method (OM). OM had longer hypocotyl but UM had longer root compared to the other. Two water supplying methods, however, had nearly similar total length adding hypocotyl and root lengths, diameters of middle and upper parts of hypocotyl. OM showed more total fresh weight than UM mainly resulting from increment of hypocotyl fresh weight. The fresh weight increment in OM was caused by relatively higher temperature of culture box compared to UM.

CFD Analysis on Flow Characteristics of Oil Film Coating Nozzle (유막 코팅 노즐의 유동특성에 관한 CFD해석)

  • Jung, Se-Hoon;Ahn, Seuig-Ill;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.50-56
    • /
    • 2008
  • Metal cutting operations involve generation of heat due to friction between the tool and the pieces. This heat needs to be carried away otherwise it creates white spots. To reduce this abnormal heat cutting fluid is used. Cutting fluid also has an important role in the lubrication of the cutting edges of machine tools and the pieces they are shaping, and in sluicing away the resulting swarf. As a cutting fluid, water is a great conductor of heat but is not stable at high temperatures, so to improve stability an emulsion type mixed fluid with water and oil is often used. It is pumped over the cutting site of cutting machines as a state of atomized water droplet coated with oil by using jet. In this paper, to develop cutting fluid supplying nozzle to obtain ultra thin oil film for coating water droplet, a numerical analysis of three dimensional mixed fluid Jet through multi-stage nozzle was carried out by using a finite volume method. Jet flow characteristics such as nozzle exit velocity, development of mixing region, re-entrance and jet intensity were analyzed. Detailed mixing process of fluids such as air, water and oil in the nozzle were also investigated. It is easy to understand complex flow pattern in multi-stage nozzle. Important flow Information for advance design of cutting fluid supplying nozzle was drawn.

A Feasibility Study on Supplying Stream Minimum Flow Using Detention Storage in Developing Planned District (단지계획지구 홍수저류지의 하천유지유량 공급방안 연구)

  • Noh Jaekyoung;Park Hyun-goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1219-1223
    • /
    • 2005
  • This study was accomplished to confirm the possibility of supplying stream minimum flow from detention storage which was determined to reduce peak flows of flood within developing planned district. The results analyzed was summarized as follows; Firstly, Sin-gil district situated in Ansan city was selected, of which watershed area has $0.56km^2$. And detention storage was determined to $5,370m^3$ from analyzing flood volume by the SCS unit hydrograph method. Secondly, using Visual Basic ver 6.0, a detention storage water balance model was developed, in which simulation was based on conditioning storage inflow and outflow according to streamflow volume or rate state. And streamflow was simulated using the DAWAST model. Thirdly, detention operation scenarios were consisted of the combinations with inflow referencing streamflow of 5mm/day, 10mm/day and outflow referencing streamflow of 1mm/day, 2mm/day. The developed detention storage water balance model was operated to simulate daily water storages of detention sized on flood by scenarios. Stream minimum flows were able to be supplied during 209 days to 237 days per a year, total volume of stream minimum flows supplied for this period was analyzed to reach 27 to $55\% of yearly streamflow volume. If inflow criteria of streamflows to detention was considered to be established on a theoretical condition, it is expected to supply stream minimum flows of 20 to $30\% of yearly streamflow from stream to detention. Also to maximize function of supplying urban stream minimum flow from detention storages, sewage waters within developing planned district have to be treated and entered to detention inflow together with streamflows to enrich function of detention planned to reduce flood volumes.

  • PDF

A Study on the Variation of Suspended Sediment Concentration in the Reservoir due to a Rainstorm (호우발생시 저수지 유입 부유사농도의 변화특성 연구)

  • Jang, Su-Hyung;Park, Moo-Jong;Yoon, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.1
    • /
    • pp.43-54
    • /
    • 2004
  • The objective of this study is to propose reservoir operation method in relation to the suspended sediment concentration due to rainstorms. Present analysis is made for the Tamjin reservoir which is under construction. For the hydrologic computations the Huff rainfall distribution, Clark unit hydrograph method and Puls reservoir routing method are used. The variation of suspended sediment concentration is calculated by 2-dimensional RMA-4 model. As a result of this study, the possible intake time from the reservoir under low frequency flood is estimated and the rainfall-ret urn period - possible intake time relationship is established, which is very important in maintaining the water quality standard when supplying water from the reservoir for different utilizationurn period- possible intake time relationship is established, which is very important in maintaining the water quality standard when supplying water from the reservoir for different utilizations.

An Improved Method for Monitoring of Soil Moisture Using NOAA-AVHRR Data

  • Fu, June;Pang, Zhiguo;Xiao, Qianguang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.195-197
    • /
    • 2003
  • Soil moisture is a crucial variable in research works of hydrology, meteorology and plant sciences. Adequate soil moisture is essential for plant growth; excesses and deficits of soil moisture must be considered in agricultural practices. There are already several remote sensing methods used for monitoring soil moisture, such as thermal inertia, vegetation water-supplying index, crop water stress index and multi-factor regression. In this paper, an improved method has been discussed which is based on the thermal inertia. We analyzed the problems of monitoring soil moisture using satellites at first, and then put forward an simplified method which directly uses land surface temperature differences to measure soil moisture. Also we have taken the influence of vegetation into account, and import NDVI into the model. The method was used in the study of soil moisture in Heilongjiang Province, China, and we draw the conclusion by the experiments that the model can evidently increase the precision of monitoring soil moisture.

  • PDF

A Numerical Method to Calculate Drainage Time in Large Transmission Pipelines Filter (대구경 관로의 배수시간 산정을 위한 수치해석 기법)

  • Shin, Byoung-Ho;Choi, Doo-Yong;Jeong, Kwansue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.511-519
    • /
    • 2017
  • Multi-regional water supply system, which installed for supplying multiple water demands, is characterized by large-sized, long-distance, tree-type layout. This system is vulnerable to long-standing service interruption when a pipe breaks is occurred. In this study, a numerical method is proposed to calculate drainage time that directly affects time of service interruption. To begin with, governing equations are formulated to embed the delayed drainage effect by the friction loss, and to resolve complicated connection of pipelines, which are derived from the continuity and energy equations. The nonlinear hydraulic equations are solved by using explicit time integration method and the Newton-Raphson method. The developed model is verified by comparing the result with analytical solution. Furthermore, the model's applicability is validated by the examples of pipelines in serial, in parallel, and complex layout. Finally, the model is utilized to suggest an appropriate actions to reduce the deviation of draining time in the C transmission line of the B multi-regional water supply system.

Growth and yield responses of rice varieties to various soil water deficit conditions under different soil types

  • Kikuta, Mayumi;Samejima, Hiroaki;Magoti, Rahab;Kimani, John M.;Yamauchi, Akira;Makihara, Daigo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.322-322
    • /
    • 2017
  • To avoid drought stress under rainfed upland conditions, it is important for rice to efficiently utilize water at shallow soil layers supplied by rainfall, and access to water retained in deer soil layers. The root developmental characteristics of rice, which play important role in the adaptability to drought conditions, vary depending on the variety. Moreover, water availability for plant differs depending on the soil types that have different physical properties such as water holding capacity, permeability, capillary force, penetration resistance, etc. In this study, we evaluated growth and yield responses of rice varieties to various soil water deficit conditions under three different soil types. The experiment was conducted in a plastic greenhouse at the Kenya Agricultural and Livestock Research Organization-Mwea from October 2016 to January 2017. Two upland varieties (NERICA 1 and 4) and one lowland variety (Komboka) were grown in handmade PVC pots (15.2 cm diameter and 85.0 cm height) filled with three different types of soil collected from major rice-growing areas of the country, namely black cotton (BC), red clay (RC), and sandy clay (SC). Three watering methods, 1) supplying water only from the soil surface (W1), 2) supplying water only from the bottom of the pots (W2), and 3) supplying water both from the soil surface and the bottom of pots (W3), were imposed from 40 days after sowing to maturity. Soil water content (SWC) at 20, 40, and 60 cm depths was measured regularly. At the harvesting stage, aboveground and root samples were collected to determine total dry weight (TDW), grain yield, and root length at 0-20, 20-40, 40-60, and 60-80 cm soil layers. Irrespective of the watering methods, the greatest root development was obtained in RC, while that in BC was less than other two soils. In BC, the degree of yield reduction under W1 was less than that in RC and SC, which could be attributed to the higher water holding capacity of BC. In RC, the growth and yield reduction observed in all varieties under W1 was attributed to the severe drought stress. On the other hand, under W2, SWC at the shallow soil depth in RC was maintained because of its higher capillary force compared with BC and SC. As the result, growths and yields in RC were not suppressed under W2. In SC, deep root development was not promoted by W2 irrespective of the varieties, which resulted in significant yield losses. Under W1, the rice growth and yield in SC was decreased although shallow root development was enhanced, and the stomatal conductance was maintained higher than RC. It was suspected that W1 caused nutrients leaching in SC because of its higher permeability. Under rainfed conditions, growth and yield of rice can be strongly affected by soil types because dynamics of soil water conditions change according to soil physical properties.

  • PDF

A Study on Formation and Concentration of Trihalomethanes in Water Treatment Process (정수처리공정의 THMs 생성과 농도변화에 관한 연구)

  • 조덕희;안승구
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.28-34
    • /
    • 1997
  • This study was carried out to investigate the effects of prechlorination and algae growth on THMs generation. The sample water obtained from Paldang Dam which is a main source of raw water for the Seoul metropolitan area. THMs concentration in the sample water was investigated in water treatment process prechlorifiation, chemical coagulation, and sand filtration. And also, THMs concentration were analyzed in the water which cultured algae in laboratory. The results were as follows 1. The THMs concentration produced by prechlorination unit process were increased in control (not purified) but decreased in process of purification. 2. The THMs concertration can reduce by increasing the number of cleaning filters. 3. The main precursor in raw water for the THMs generation was supplied by algae growth. So as to reduce the THMs concentration in water supplying system, it is the best method to manage algae growth in water body of Paldang reservoir.

  • PDF

Economic Analysis on Solar Energy System with Decision Support Models (의사 결정지원 모형에 의한 태양에너지 이용시스템의 경제성 고찰)

  • Chea, In-Su;Jo, Dok-Ki;Chea, Young-Hi
    • Solar Energy
    • /
    • v.10 no.1
    • /
    • pp.63-79
    • /
    • 1990
  • It has been recognized that a policy for supplying solar house and hot water production systems utilizing solar energy needs to be driven to save civilian comsuming energy or to develop alternative energy. However, the economic feasibility study of solar energy systems must be carried out before their practical use. The purpose of this study is to furnish information for supplying policy and enlightening users with the economic feasibility study of solar house and hot water production systems. Decision support systems are established to carry out economic analysis on solar systems more accurately. Therefore, computer simulation is carried out to analyze the performance of solar systems and also economic feasibility study by trial and error method is carried out. Fuel cost and additional cost for solar systems are estimated employing present worth concept and economic analysis has been conducted using the break-even point analysis method and life-cycle cost analysis method.

  • PDF

A Study on the Internal Structure of Heumgyeonggaknu

  • Kim, Sang Hyuk;Lee, Yong Sam;Lee, Min Soo;Ham, Sun Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.113-121
    • /
    • 2013
  • Heumgyeonggaknu is a water-hammering type automatic water clock which was made by Jang Yeong-Sil in 1438. The water clock that is located in Heumgyeonggaknu consists of Suho which is equipped with 2-stage overflow. Constant water wheel power is generated by supplying a fixed amount of water of Suho to Sususang, and this power is transferred to each floor at the same time. The 1st floor rotation wheel of Gasan consists of the operation structure which has the shape of umbrella ribs. The 2nd floor rotation wheel is made so that the 12 hour signal, Gyeong-Jeom signal, and Jujeon constitute a systematic configuration. The 3rd floor rotation wheel is made so that the signal and rotation of Ongnyeo and four gods can be accomplished. Based on the above conceptual design, this paper analyzed the internal signal generation and power transmission of Heumgyeonggaknu.