• Title/Summary/Keyword: Water storage capacity

검색결과 627건 처리시간 0.027초

확률분포를 이용한 지속가능한 빗물이용시설의 저류용량 산정 (Estimation of Storage Capacity for Sustainable Rainwater Harvesting System with Probability Distribution)

  • 강원구;정은성;이길성;오진호
    • 한국물환경학회지
    • /
    • 제26권5호
    • /
    • pp.740-746
    • /
    • 2010
  • Rainwater has been used in many countries as a way of minimizing water availability problems. Rainwater harvesting system (RHS) has been successfully implemented as alternative water supply sources even in Korea. Although RHS is an effective alternative to water supply, its efficiency is often heavily influenced by temporal distribution of rainfall. Since natural precipitation is a random process and has probabilistic characteristics, it will be more appropriate to describe these probabilistic features of rainfall and its relationship with design storage capacity as well as supply deficit of RHS. This study presents the methodology to establish the relationships between storage capacities and deficit rates using probability distributions. In this study, the real three-story building was considered and nine scenaries were developed because the daily water usage pattern of the study one was not identified. GEV, Gumbel and the generalized logistic distribution ware selected according to the results of Kolmogorov-Smirnov test and Chi-Squared test. As a result, a set of curves describing the relationships under different exceedance probabilities were generated as references to RHS storage design. In case of the study building, the deficit rate becomes larger as return period increases and will not increase any more if the storage capacity becomes the appropriate quantity. The uncertainties between design storage and the deficit can be more understood through this study on the probabilistic relationships between storage capacities and deficit rates.

도시유역 CSOs 처리를 위한 저류형시스템 설계용량 산정 (Estimation of Storage Capacity for CSOs Storage System in Urban Area)

  • 조덕준;이정호;김명수;김중훈;박무종
    • 한국물환경학회지
    • /
    • 제23권4호
    • /
    • pp.490-497
    • /
    • 2007
  • A Combined sewer overflows (CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available (which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a continuous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban drainage system used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range $3{\times}DWF$ (dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a decision of storage volume for CSOs reduction and water quality protection.

저유수량의 소실률 조사연구 (A Study on Sediment Deposite in Reservoir)

  • 엄태영
    • 한국농공학회지
    • /
    • 제10권1호
    • /
    • pp.1413-1419
    • /
    • 1968
  • Yochon reservoir was consturcted with an original storage capacity of 202.7 chung-meters. This reservoir receives the water from watershed area of 933.0 chungbo and has irrigated area of 478.0 chungbo. In 1967 a detailed capacity survey of this reservoir was carried out by a new depth-recorder under the scheme of reservoir sedimentation of Agricultural Engineering Research Center. Significant findings are 1. The capacity of the reservoir for the water storage has been reduced by 8.9%(18.066 chung-meters out of the 202.7 chung-meters) since its construction, a period of just 39.0 years. 2. The sediment accumulation in the reservoir represents an average annual soil loss of 0.496mm depth(0.463 chung-meters) of soil from the watershed area of 933.0 chungbo. Eventually the capacity of the reservoir for the water storage will be reducing by about 25%(50.7 chung-meters out of the 202.7 chung-meters)in one hundred years since its construction. We have to set up controlling projects for those reservoir protections from the sediment, soil loss, and other failures. The depth recorder is very useful, convenient, and accurate machine for surveys of reservoir capacity and other river surveys.

  • PDF

기후변화에 따른 둑높임 저수지의 용수공급능력 평가 (Evaluating Water Supply Capacity of Embankment Raised Reservoir on Climate Change)

  • 이재남;노재경
    • 한국농공학회논문집
    • /
    • 제57권4호
    • /
    • pp.73-84
    • /
    • 2015
  • An embankment raising project on 113 agricultural reservoirs in Korea was implemented in 2009 to increase water supply capacity for agricultural water and instream uses. This study evaluated the future water supply capacity of the Imgo reservoir at which the agricultural reservoir embankment raising project was completed, considering climate change scenarios. The height of the embankment of the reservoir was increased by 4.5 m, thereby increasing its total storage from 1,657.0 thousand to 3,179.5 thousand cubic meters. To simulate the reservoir water storage with respect to climate changes, two climate change scenarios, namely, RCP 4.5 and RCP 8.5 (in which greenhouse gas reduction policy was executed and not executed, respectively) were applied with bias correction for reflecting the climate characteristics of the target basin. The analysis result of the agricultural water supply capacity in the future, after the agricultural reservoir embankment raising project is implemented, revealed that the water supply reliability and the agricultural water supply increased, regardless of the climate change scenarios. By simulating the reservoir water storage considering the instream flow post completion of the embankment raising project, it was found that water shortage in the reservoir in the future is not likely to occur when it is supplied with an appropriate instream flow. The range of instream flow tends to decrease over time under RCP 8.5, in which the greenhouse gas reduction policy was not executed, and the restoration of reservoir storage was lower in this scenario than in RCP 4.5, in which greenhouse gas reduction policy was executed.

도시유역 저류형 시스템 설계를 위한 CSOs 산정 (Storm-Water CSOs for Reservoir System Designs in Urban Area)

  • 조덕준;김명수;이정호;박무종;김중훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.1199-1203
    • /
    • 2005
  • Combined sewer overflows(CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available(which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a contiunous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban dranage system used analytical Probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics or the subject area using analytical Probabilistic model. Runoff characteristics manifasted the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range 3xDWF(dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a dicision of storage volume for CSOs reduction and water quality protection.

  • PDF

우기 전후 댐 저수용량에 대한 이변량 빈도해석과 댐의 용수공급능력 평가 (Bivariate Frequency Analysis of Dam Storage Capacity before and after the Rainy Season and Evaluation on Water Supply Capacity)

  • 전창현;유철상;주국화;이광만
    • 한국수자원학회논문집
    • /
    • 제47권12호
    • /
    • pp.1199-1212
    • /
    • 2014
  • 본 연구에서는 댐 저수용량에 대한 이변량 빈도해석을 수행함으로써 재현기간 개념을 이용한 댐의 용수공급능력 평가방법을 제안하였다. 제안된 방법은 대청댐에 적용되어 검토되었다. 추가적으로 국내의 대표적인 가뭄사상에 대한 대청댐의 재현기간을 산정하고, 그결과를검토하였다. 그 결과를 정리하면 다음과 같다. 먼저, 본 연구에서는 이변량 빈도해석을 수행하기 위해 한국의 기후 특성을 반영한 댐의 용수공급능력 평가인자를 고려하였으며 5월 저류량 및 6~10월의 저류량 차이를 대상 변량으로 결정하였다. 둘째, 재현기간의 개념을 이용하여 대청댐의 용수공급능력을 평가한 결과, 대청댐은 재현기간 20년 미만에 대한 용수공급능력을 확보하는 것으로 나타났다. 마지막으로, 본 연구에서 제안된 방법은 한반도에 발생했던 대표적인 가뭄사상들을 분석하고, 해당 사상들에 대한 재현기간을 산정하는데 있어서도 유효함을 확인하였다.

Development of a Hydrologic System for Simulating Daily Water Storage in an Estuary Reservoir

  • Noh, Jae-Kyoung
    • 한국농공학회지
    • /
    • 제45권7호
    • /
    • pp.1-10
    • /
    • 2003
  • In order to analyze the water supply capacity in an estuary reservoir, a system composed of daily water balance model and daily inflow model was developed. The agricultural water demands to paddy fields, domestic water demands to residential areas, and industrial water demands to industrial complexes were considered in this daily water balance model. Likewise, the outflow volume through sluice gates and inside the water level at the start of the outflow was initially conditioned to simulate estuary reservoir storage. The DAWAST model (Noh, 1991) was selected to simulate daily estuary reservoir inflow, wherein return flows from agricultural, domestic, and industrial water were included to simulate runoff. Using this system, the water supply capacity in the Geum River estuary reservoir was analyzed.

호남지방의 저수지의 매몰상황과 저수량에 관한 조사연구 (Studies on t Sediment Deposit and Storage Capacity of the Honam Province)

  • 이창구
    • 기술사
    • /
    • 제3권10호
    • /
    • pp.7-17
    • /
    • 1970
  • Fourteen reservoirs maintained by the local land improvement associations in the province of Chullabuk-Do and 20 reservoirs maintained by those in the province of Chullanam-Do, were surveyed in connection with a correction between storage capacity and sediment deposit. In addition to this survey, 3347 of small scale reservoirs, that lie scattered around in the above mentioned two provinces were investigated by using existing records pertaining to storage capacity in the office of City and Country, respectively. According to this inrestigation. the following conclusions are derived. 1. A sediment deposition rate is high, being about 10.63m$^3$/ha of drainage area, and resulting in the average decrease of storage capacity by 27.5%. This high rate of deposition could be mainly attributed to the severe denudation of forests due to disorderly cuttings of trees. Especially, in small scale reservoirs, an original average design storage depth of 197mm in irrigation water depth is decreased to about 140mm. 2. An average unit storage depth of 325.6mm as the time of initial construction is decreased to 226mm at present. This phenomena causes a greater shortage of gation water, since it was assumed that original storage quantity itself was already in short.

  • PDF

산불이 임지(林地)의 수저류(水貯留) 특성(特性)에 미치는 영향(影響) (Effects of Forest Fire on the Water Storage Characteristics of Forest Land)

  • 이헌호
    • 한국산림과학회지
    • /
    • 제85권1호
    • /
    • pp.66-75
    • /
    • 1996
  • 본 연구는 산불 발생이 임지의 수저류 특성에 미치는 영향을 알아보기 위해 실시했다. 비산불 지역과 산화적지를 대상으로 산림토양의 수저류능을 토양공극, 최대수분량, 이용가능수량, 그리고 투수율을 측정하여 비교 분석하였다. 주요 인자들의 측정에 의해서 얻어진 결과는 다음과 같다. 산화적지와 대조구에서 토성이 깊어질수록 전공극(全孔隙), 조공극(組孔隙), 이용가능 수량, 투수율은 모두 감소하는 경향을 나타내고, 세공극(細孔隙)은 약간 증가하는 경향이 있었다. 대조구에 비해 산화적지에서는 투수율, 조공극량 및 이용가능수량이 낮게 나타나는 반면, 세공극량은 높게 나타났다. 그리고 산불이 발생한 직후에는 산림토양의 공극량 분포에 큰 변화가 일어나지 않지만, 시간이 경과함에 따라 산화적지의 표토 공극분포에 변화를 일으키면서 서서히 토심 20-40cm까지 영향을 미치는 것으로 나타났다. 또한 토심변화에 따른 이용가능수량의 변화는 대조구에 비해 산화적지에서 상대적으로 큰 폭으로 감소하는 경향이 있었다. 이 결과로 산림의 수저류능은 산불에 의해 크게 영향을 받는 것을 알 수 있었다.

  • PDF

Design, manufacture and field test of a surface water storage tank providing irrigation water to upland crops

  • Shin, Hyung Jin;Kim, Young-Joon;Lee, Jae Young;Kim, Hwang-Hee;Jo, Sung Mun;Cha, Sang Sun;Hwang, Seon-Ah;Lee, Seung-Kee;Park, Chan Gi
    • 농업과학연구
    • /
    • 제47권4호
    • /
    • pp.1057-1069
    • /
    • 2020
  • For most upland crops in Korea, underground water is used to ensure an adequate water supply. Thus, surface water storage tanks are needed to supply surface water from reservoirs or streams. This study discusses the design, manufacture and monitoring of a water storage tank capable of reliably supplying water to crops and preventing the inflow of floating debris. The study was conducted in an apple orchard in Yesan-gun, Chungcheongnam-do in Korea. Based on the water requirements of the crops and size of the orchard, a required flow volume of about 0.6 ㎥·h-1 was determined, along with a surface water storage tank capacity of 1.2 ㎥. Following a comparison with other materials, stainless steel (STS) was used to construct the water tank. The tank was designed to provide 14 hours of irrigation, enabling a small-capacity, cost-efficient tank design to be used. A surface water irrigation test was performed using the surface water storage tank. The average surface water irrigation flow rate was 0.00045 ㎥·m-2·h-1. The water quality test showed that the pH, suspended solids (SS), total nitrogen (TN), and total phosphorus (TP) values satisfied the reference values for agricultural water. The test results showed that the surface water storage tank evaluated in this study allows for crop irrigation when there is a lack of groundwater during droughts.