• Title/Summary/Keyword: Water speed

Search Result 2,513, Processing Time 0.036 seconds

A Study on Fuzzy Control Method of Energy Saving for Activated Sludge Process in Sewage Treatment Plant (하수처리 활성오니공정의 에너지 절감을 위한 퍼지 제어 방법에 관한 연구)

  • Nahm, Eui-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1477-1485
    • /
    • 2018
  • There are two major issues for activated sludge process in sewage treatment plant. One is how to make sewage be more clean and the other is the energy saving in sewage treatment process. The major monitoring sewage qualities are chemical oxygen demand, phosphorus, nitrogen, suspended solid in effluent. These are transmitted to the national TMS(Telemetry Monitoring System) at every hour. If these exceed the environmental standard, the environmental charges imposed. So, these water qualities are to be controlled below the environmental standard in operation of sewage treatment plant. And recently, the energy saving is also important in process operation. Over 50% energy is consumed in blowers and motors for injection oxygen into aeration tank. So, with the water qualities to be controlled below the environmental standard, the energy saving also is to be accomplished for efficient plant management. Almost researches are aimed to control water quality without considering energy saving. AI techniques have been used for control water quality. AI modeling simulator provided the optimal control inputs(blower speed, waste sludge, return sludge) for control water quality. Blower speed is the main control input for activated sludge process. To make sewage be more clean, the excessive blower speed is supplied, but water quality is not better than the previous. In results, non necessary energy is consumed. In this paper we propose a new method that the energy saving also is to be accomplished with the water qualities to be controlled below the environmental standard for efficient plant management. Water qualities in only aeration tank are used the inputs of fuzzy models. Outputs of these models are chemical oxygen demand, phosphorus, nitrogen, suspended solid in effluent and have the environmental standards. In test, we found this method could save 10% energy than the previous methods.

Effect of expanding low-salinity water in the East China Sea on underwater sound propagation (동중국해 저염분수의 확장이 수중 음파 전달에 미치는 영향)

  • Bum-Jun Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • The salinity of sea water is known as a less influencing variable in the calculation of the sound speed of the sea water. This study investigated how the low salinity of sea water affects the vertical structure of the sound speed near the mouth of the Yangtze (Changjiang) River when the diluted fresh water extends toward the East China Sea in the summer. As a result of comparing two types of sound speeds considered measured and fixed salinity, sound speeds appeared distinguishable when the halocline formed steeper than the thermocline due to Yangtze-River Diluted Water (YRDW). In addition, unlikely with fixed salinity conditions, when measured salinity was considered, an underwater sound channel appeared in the middle of the thermocline of which the source depth is located. Accordingly, considering the salinity, this study suggests using Expendable Conductivity Temperature Depth (XCTD) and Expendable Sound Velocimeter (XSV) rather than Expandable Bathy Thermograph (XBT) when calculating sound speed because of the strong halocline due to YRDW in the summer.

A Study on the Ship's Speed Control and Ship Handling at Myeongnayang Waterway (명량수도 해역에서 항해속력 규제와 선박운용에 관한 연구)

  • Kim, Deug-Bong;Jeong, Jae-Yong;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.193-201
    • /
    • 2014
  • This study provided safe sailing speed and appropriate passing time to areas of known strong current water to prevent marine accident of the ships. To the interpretation of these data which target Myeongnyang waterway, AIS data of the ship was collected from $12^{th}$ July to $15^{th}$ July 2010 and site environment was investigated on $4^{th}$ September 2010. On the basis of the collected data, the 'Minimum Navigation Speed' and 'Optimum Navigation Speed' were calculated. It has also considered the 'Spare control force' or allowance and the 'Respond Rudder Angle' for each tidal current speed. Additionally, it suggested the safe passing time to strong current area by analyzing tidal level and tidal current speed. The conclusion of the research are as follows : (1) If the flow rate is greater than 4.4 kn, it is difficult for the model ship to control herself by her own steering power and to cope with tidal current pressure force and yaw moment caused by the tidal current.. (2) The minimum navigation speed should be over 2.3 times the tidal current and the optimum navigation speed should be over 4.0 times the tidal current. (3) When spring tide, the optimum passing time at Myeongnyang waterway is between 30 minutes to 1 hour before the time of high/low water, and at 5 hours after high/low water, passing of ships should be avoided because it is time when the flow rate is over 4 kn.

Developmental Speed of Hybrid Fertilized Egg Between Olive Flounder Paralichthys olivaceus Female and Starry Flounder Platichthys stellatus Male at Different Water Temperatures and Larval Growth (넙치(Paralichthys olivaceus) 암컷과 강도다리(Platichthys stellatus) 수컷 잡종에서 수정란의 수온별 발생속도 및 자어 성장)

  • Do, Yong Hyun;Min, Byung Hwa;Choi, Myeoung Lyeoul;Lim, Han Gyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.630-636
    • /
    • 2014
  • To investigate the characteristics of hybrid eggs and larva produced by olive flounder Paralichthys olivaceus females and starry flounder Platichthys stellatus males, we examined the developmental speed of hybrid eggs at different water temperatures. The developmental speed of hybrid eggs tended to increase with increasing water temperature. Specifically, the hatching times were 91 hrs, 62 hrs and 43 hrs at $10^{\circ}C$, $15^{\circ}C$ and $20^{\circ}C$, respectively. The mean biological minimum temperature of the hybrid was $1.3^{\circ}C$, which is in between that of the olive flounder and the starry flounder. In high water temperatureseasons, slower growth was observed in hybrids of the starry flounder which is a coldwater fish.

Analytical evaluation of water injection pump dynamic characteristic (물 분사 펌프 동특성의 해석적 평가)

  • Lee, JongMyeong;Lee, JeongHoon;Ha, JeongMin;Ahn, ByungHyun;Gu, DongSik;Choi, ByeongKeun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.60-64
    • /
    • 2013
  • Water injection pump produced the 1st oil well through the high pressure after the Deep water oil well drilling. After finish the work it is hard to produce only using itself pressure due to low pressure. Therefore it can be increased recovery factor through the injection seawater of high pressure. Is the key equipment used in the marine plant and it is developing at many industries. In this paper, Analyze changes in the natural frequency due to the stiffness of the bearing. Analyze the critical speed of the natural frequency due to the change of operation speed. And evaluate the Stability. And then analyze the displacement and clearance through the unbalance response this way has contributed to the reliability of the developing product. Through a mathematical analysis.

  • PDF

Propeller Tip Vortex Cavitation Control Using Water Injection (물 분사를 이용한 프로펠러 날개 끝 보오텍스 캐비테이션 제어)

  • Lee, Chang-Sup;Han, Jae-Moon;Kim, Jin-Hak;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.770-775
    • /
    • 2010
  • As considerable interests in noise emission from the ships have been increased, control of the propeller cavitation generating vibration and radiating noise is looming large. In general, the tip vortex cavitation is first produced in case of full scale propellers, and noise levels rise dramatically from that moment. In order to reduce induced noise from the tip vortex cavitation and hence increase the cavity inception speed, we propose the mass injection method. Water injected from the propeller tip decreases rotating speed of the tip flow, and it restrains growing the tip vortex cavity. Experimental investigations of the model tests carried out in a large cavitation tunnel show that the tip vortex cavitation is effectively controled by water injection from the propeller tip.

A study on the simulation of water cooling process for the prediction of plate deformation due to line heating

  • Nomoto, Toshiharu;Jang, Chang-Doo;Ha, Yun-Sok;Lee, Hae-Woo;Ko, Dae-Eun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • In a line heating process for hull forming, the phase of the steel transforms from austenite to martensite, bainite, ferrite, or pearlite depending on the actual speed of cooling following line heating. In order to simulate the water cooling process widely used in shipyards, a heat transfer analysis on the effects of impinging water jet, film boiling, and radiation was performed. From the above simulation it was possible to obtain the actual speed of cooling and volume percentage of each phase in the inherent strain region of a line heated steel plate. Based on the material properties calculated from the volume percentage of each phase, it should be possible to predict the plate deformations due to line heating with better precision. Compared to the line heating experimental results, the simulated water cooling process method was verified to improve the predictability of the plate deformation due to line heating.

Effects of Maximum Repeated Squat Exercise on Number of Repetition, Trunk and Lower Extremity EMG Response according to Water Depth

  • Jang, Tae Su;Lee, Dong Sub;Kim, Ki Hong;Kim, Byung Kwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.152-160
    • /
    • 2021
  • The purpose of this study was to investigate the difference in the number of repetitions and the change in electromyographic response during the maximum speed squat exercise according to the depth conditions and the maximum speed squat exercise according to the time of each depth. Ten men in their 20s were selected as subjects and the maximum speed squat was performed for one minute in three environmental conditions (ground, knee depth, waist depth). We found that the number of repetitions according to the depth of water showed a significant difference, and as a result of the post-mortem comparison, the number of repetitions was higher in the ground condition and the knee depth than in the waist depth. And the muscle activity of rectus abdominis, erector spinae, rectus femoris, biceps femoris was increased during ground squat exercise, activity of all muscle was decreased during knee depth squat exercise, and activity of rectus abdominis, erector spinae, biceps femoris, tibialis anterior, gastrocnemius was decreased during waist depth squat. In conclusion, muscle activity of lower extremities during squat exercise in underwater environment can be lowered as the depth of water is deep due to buoyancy, but muscle activity of trunk muscles can be increased rather due to the effect of viscosity and drag.

Hydrodynamic Characteristics and Speed Performance of a Full Spade and a Twisted Rudder (전가동타와 비대칭타의 유체동역학적 특성 및 속도성능)

  • Choi, Jung-Eun;Kim, Jung-Hun;Lee, Hong-Gi;Park, Dong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.163-177
    • /
    • 2010
  • This article examines hydrodynamic characteristics and speed performances of a ship attached with a full spade and a twisted rudder based on a computational method. For this study, a 13,100 TEU container carrier is selected. The turbulent flows around a ship are analyzed by solving the Reynolds-averaged Navier-Stokes equation together with the application of Reynolds stress turbulence model. The computations are carried out at the conditions of rudder, bare hull, hull-rudder and hull-propeller-rudder. An asymmetric body-force propeller is applied. The speed performance is predicted by the model-ship performance analysis method of the revised ITTC'78 method. The hydrodynamic forces are compared in both rudder-open-water and self-propulsion conditions. The flow characteristics, the speed performance including propulsion factors and the rudder-cavitation performance are also compared. The model tests are conducted at a deep-water towing tank to validate the computational predictions. The computational predictions show that the twisted rudder is superior to the full spade rudder in the respect of the speed and the cavitation performances.

자화수에서 염류의 용해속도 변화와 자화수에 의한 NaCl, KCl 및 석고의 결정화 양상에 대한 연구

  • Jeon, Sang Il;Kim, Dong Ryul;Lee, Suk Keun
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.2
    • /
    • pp.116-120
    • /
    • 2001
  • In order to know the physicochemical properties of magnetized water, the experimental methods of column assay, crystalization of saltsand gypsom have been explored to elucidate the effects of magnetized water on the solubility speed of salts, crystal pattern from salt squeous solutions, and gypsom crystal pattern, respectively. In the column assay for salt solubility the magnetized water showed the decreased initial solubility speed of NaCl and slightly increased initial solubility spped of KCI, however, the maximum solugilities of NaCl and KCI in the magnetized aster were almost same in the double distilled water, respectively. The column assay also indicated that the magnetized water showed the decreased initial solubility speed of urea (CH$_4$N$_2$O), sodium citrate (HOC(CO$_2$Na)-(CH$_2$CO$_2$Na)$_2$-2H$_2$O) and (NH$_4$)$_2$compared to the double distilled water, while slightly increased solubility speed of glycine (NH$_2$CH$_2$COOH), boric acid (H$_3$BO$_3$), MgSO$_4$. Crystalization of 1% or 5% salt aqueous solutions by rapid evaporation disclosed that the magnetized water produced more condensed and bigger crystal structure than the control water. The pattern of gypsom crystal formation also indicated that the magntized water enhanced the crystal formation in the hydration reaction of gypsom plaster compared to the double distilled water. Taken together, it was presumed that the magnetized water showed the different physicochemical properties in the interaction with various salts, especially showed the contrast results between NaCl and KCI.

  • PDF