• Title/Summary/Keyword: Water source

Search Result 4,427, Processing Time 0.031 seconds

Cooling and Heating Operation Characteristics of Raw-water Source Heat Pump and Air Source Heat Pump in Water Treatment Facility (정수장 내 원수열원 및 공기열원 히트펌프의 냉난방 운전 특성)

  • Oh, Sun-Hee;Yun, Rin;Cho, Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.386-391
    • /
    • 2013
  • The dynamic characteristics of both raw-water source and air source heat pump utilized in water treatment facilities were investigated by using TRNSYS simulator. The modeling of the raw water source heat pump was verified by the measured data at the Cheongju water treatment facility, and the modeling at the air source heat pump was verified by the data from the Siheung water treatment facility. The average heating and cooling COPs from the raw-water source heat pump were higher than those of the air source heat pump by 19% and 18%, respectively. The power consumptions of the air source heat pump for the cooling and the heating were higher than those of the raw water source heat pump by 28% and 26%, respectively.

A Study on Comparative Analysis of Energy Performance of Hybrid Heat Pump Systems Using Ground Heat Source and Water Heat Source (지열원과 수열원을 이용한 하이브리드 히트펌프 시스템의 에너지 성능 비교 분석 연구)

  • Park, Sihun;Kim, Jonghyun;Min, Joonki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.59-67
    • /
    • 2021
  • In this study, the performance of the single heat source system and the hybrid system was comparatively analyzed. Case 1 is a ground heat source system, and Case 2 is a water heat source system. Case 3, a hybrid system, reduced the capacity of the ground heat source and applied a water heat source as an auxiliary heat source, and Case 4 was composed of a system that applied a water heat source as an auxiliary heat source to the ground heat source system. As a result of the simulation, in case 3, energy consumption was reduced by up to 2.67% compared to ground sources for cooling. In Case 4, COP was improved by up to 10.02% compared to ground sources during cooling, and EST was calculated to be 2.42℃ lower. During heating, 0.83% was improved compared to the water heat source. At this time, the EST was calculated to be 2.25℃ higher than the water heat source.

Analysis on Cooling and Heating Performance of Water-to-Water Heat Pump System for Water Source Temperature (물-물 수온차 히트펌프 시스템의 원수온도에 따른 성능 특성 분석)

  • Park, Tae Jin;Cho, Yong;Park, Jin-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.169.2-169.2
    • /
    • 2010
  • The research assesses the performance of the water-to-water heat pump system installed in Cheongju water treatment plant for cooling and heating ventilation. In summer season monthly averaged COP is ranged from 3.85 to 4.56 according to the water source temperature, and the performance is increased as the raw water temperature is dropped. While, heating performance is increased for the high temperature water source, and the monthly averaged COP is changed from 2.92 to 3.82. The correlation of the water source temperature and the heat pump performance shows a linear tendency by the simple regression of average data. In heating, the COP of heat pump system linearly rises according to the water source temperature. In comparison, the COP in cooling linearly reduces as the raw water temperature is raised. The goodness of fit at the simple regression shows the coefficient of determination 82% in cooling, 46% in heating. The electric cost of water-to-water heat pump is reduced by 40% compared to that of air source heat pump.

  • PDF

Dynamic evaluation of water source safety based on fuzzy extension model

  • Ou, Bin;Gong, Aimin;He, Chunxiang;Fu, Shuyan
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.149-154
    • /
    • 2019
  • The information matter-element system was built to assess safety of water source. Based on the thought of multiindex fusion, fuzzy matter-element model evaluating water source behavior was constructed by matter-element transform. This model can process comprehensively hydrogeological data, ecological environment, water pollution, surface disturbance, and so on. Water source safety behavior can be described by the qualitative and quantitative manners. According to the development trend of quantitative results, water source safety behavior can be expressed dynamically. As an example, the proposed method was used to assess safety status of 7 water sources in the region. The numerical example shows that the proposed method is feasible and effective, and the evaluation results are reasonable.

A Study on the Performance Evaluation of Combined Heat Pump System according to the Ratio of Ground Heat Source and Water Heat Source (지열원 및 수열원 비율에 따른 복합열원 히트펌프시스템 성능 평가 연구)

  • Park, Sihun;Ko, Yujin;Min, Joonki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.2
    • /
    • pp.11-19
    • /
    • 2021
  • In this study, combined heat source heat pump system was implemented with 4 single heat source heat pumps each applied with a geothermal source and a water source. Five cases (Case1~Case5) were configured to conduct a performance comparison and analysis of the combined heat source heat pump system. First of all, as a result of analyzing the heat source, the case when 4 ground heat sources were applied (Case1) showed a uniform EST(Entering Source Temperature) distribution throughout the year since it is less affected by outside air compared to the case when 4 water heat sources were applied (Case5). In both winter and summer, the ground heat source maintained higher EST than the water heat source. Therefore, the system with high ratio of geothermal sources is advantageous for heating, and with high ratio of water heat sources is advantageous for cooling.

A Study on the Improvement of the Water Source Energy Distribution Regulation for High Efficient Data Center Cooling System in Korea (데이터센터 냉방시스템 고효율화를 위한 국내 수열에너지 보급 제도 개선에 관한 연구)

  • Cho, Yong;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.21-29
    • /
    • 2021
  • In this study, the current regulation of the water source energy, one of the renewable energy, was analyzed, and the improvement plan for the high efficient data center cooling system was suggested. In the improvement plan, the design and construction guidelines of the water source energy system permit to adopt the cooling and heating system with or without heat pump. In addition, it should also include the system operated in the cooling mode only all year-round. The domestic test standards to consider the water source operating conditions should be developed. Especially, it is highly recommended that the test standards to include the system with forced cooling and free cooling modes related with the enhanced data center cooling system adopting the water source energy.

Experimental Study on Source Level Estimation Techniques of Underwater Sound Source in Reverberant Water Tank (잔향수조 내 수중음원의 음원레벨 추정기법에 관한 실험연구)

  • Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.358-363
    • /
    • 2019
  • The acoustic power is used as a primary index characterizing underwater sound sources and could be defined by its source level. The source level has been assessed using various experimental techniques such as the reverberation time method and reverberant tank plot method. While the reverberation time method requires reverberation time data extracted in a preliminary experiment in a reverberant water tank, the reverberant tank plot method only needs acoustic pressure data directly obtained at the reverberation water tank. In this research, these experimental techniques were studied in comparative experiments to estimate the source levels of underwater sources in a reverberant water tank. This paper summarizes the basic theories and procedures of these experimental techniques and presents the experimental results for an underwater source in a long cuboid water tank using each technique, along with a discussion.

A Study on Heating Characteristics of Ground Source Heat Pump with Variation of Heat Exchange Methods (열교환방식에 따른 지열히트펌프의 난방특성에 관한 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung;Park, Cha-Sik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.9-15
    • /
    • 2012
  • The objective of this study is to investigate the influence on the heating performance for a water-to-water 10RT ground source heat pump by using the water switching and refrigerant switching method. The test of water-to-water ground source heat pump was measured by varying the compressor speed, load side inlet temperature, and ground heat source side temperature. The heating capacity and COP of the heat pump increased with increasing ground heat source temperature. As a result, compared to a refrigerant switching method, the water switching method with counter flow improves the heating capacity and COP by approximately 5% in average, respectively.

Application of Optimum Multiparameter Analysis on Seawater Mixing in the South Sea of Korea Using Ra Isotopes

  • Lee Tongsup;Yang Han-Soeb;Kim Hyang-Bae
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.143-150
    • /
    • 2000
  • Assuming that summer surface waters in the South Sea (northern East China Sea) are formed mostly by a mixing of three source water (Changjiang Discharge Water; Kuroshio Water and Yellow Sea Surface Water) we apply optimum multiparameter (OMP) analysis to calculate the mixing ratio of each source water to a given surface water. Since OMP requires more parameters than the number of water types (three in this study), we utilize two radium isotopes of dissolved $^{226}Ra\;and\;^{228}Ra$ along with temperature and salinity. Parameter values of each source water are deduced from in situ and historical data. Results with three source of waters on the surface waters are quite promising with less than $1\%$ of unanswered portions. Results not only reproduce the measured temperature and salinity faithfully but also discern the water masses of similar T and S according to their source water mixing. Extending OMP analysis to a whole water column obviously requires more parameters because more source waters are involved in the water mass formation. Original OMP routine utilized dissolved oxygen and nutrients. However, they seem to be perturbed too much by biological activities in the case of shallow waters. We discussed the use of other potential parameters. Also the benefit of parameter substitution is briefly introduced for the future OMP application on shallow waters.

  • PDF

An experimental study on decision making for multi-source water (다중수원 수처리 의사결정에 관한 실험적 연구)

  • Jung, Jungwoo;Cho, Hyeong-Rak;Lee, Sangho;Chae, Soo-Kwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • A combined treatment system using multiple source water is becoming important as an alternative to conventional water supply for small-scale water systems. In this research, combined water treatment systems were investigated for simultaneous use of multi-source water including rainwater, ground water, river water, and reclaimed wastewater. A laboratory-scale system was developed to systematically compare various combinations of water treatment processes, including sand filtration, microfiltration (MF), granular activated carbon (GAC), and nanofiltration (NF). Results showed that the efficiency of combined water treatment systems was affected by the quality of feed waters. In addition, a simply approach based on the concept of linear combination was suggested to support a decision-making for the optimum water treatment systems with the consideration of final water quality.