• Title/Summary/Keyword: Water soluble ion

Search Result 202, Processing Time 0.028 seconds

Size Distribution Characteristics of Particulate Mass and Ion Components at Gosan, Korea from 2002 to 2003

  • Han J.S.;Moon K.J.;Lee S.J.;Kim J.E.;Kim Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E1
    • /
    • pp.23-35
    • /
    • 2005
  • Size distribution of particulate water-soluble ion components was measured at Gosan, Korea using a micro-orifice uniform deposit impactor (MOUDI). Sulfate, ammonium, and nitrate showed peaks in three size ranges; Sulfate and ammonium were of dominant species measured in the fine mode ($D_{p} < 1.8 {\mu}m$). One peak was observed in the condensation mode ($0.218\sim0.532{\mu}m$), and the other peak was obtained in the droplet mode ($0.532\sim1.8{\mu}m$). Considering the fact that the equivalent ratios of ammonium to sulfate ranged from 0.5 to 1.0 in these size ranges, it is inferred that they formed sufficiently neutralized compounds such as ($NH_{4})_{2}SO_{4} and (NH_{4})_{3}H(SO_{4})_{2}$ during the long-range transport of anthropogenic pollutants. On the other hand, nitrate was distributed mainly in the coarse mode ($3.1\sim6.2{\mu}m$) combined with soil and sea salt. Two sets of MOUDI samples were collected in each season. One sample was collected when the concentrations of criteria air pollutants were relatively high, but the other represented relatively clean air quality. The concentrations of sulfate and ammonium particles in droplet mode were the highest in winter and the lowest in summer. When the air quality was bad, the increase of nitrate was observed in the condensation mode ($0.218\sim0.282{\mu}m$). It thus suggests that the nitrate particles were produced through gas phase reaction of nitric acid with ammonia. Chloride depletion was remarkably high in summer due to the high temperature and relative humidity.

Influence of pH on Leaching Behavior of Phosphorous from Steelmaking Slag (제강슬래그에서 인의 침출 거동에 대한 pH의 영향)

  • Kim, Jeong-In;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.23-28
    • /
    • 2016
  • In this study, leaching process to extract phosphorus from the steelmaking slag was investigated for using the fertilizer resources of agriculture. In general, the phosphorus of steelmaking slag is formed as $C_2S-C_3P$ solid solution, and also, this solid solution is soluble in water more than the other phase in slag, and less than free CaO phase. In the present experiment, the influence of pH on the leaching behavior of various elements from the steelmaking slag was investigated by using multi-component steelmaking slag. When the pH was decreased, the concentration of Ca, Si, P and Fe in solution from the steelmaking slag was increased. Furthermore, at a pH of 3, the concentration of P ion in solution was decreased as leaching time increased. It is considered that the decrement of P was caused from the precipitation reaction between P ion and Fe ion in solution.

Salt Accumulation and Desalinization of Rainfall Interception Culture Soils of Rubus sp. in Gochang-gun, Jeollabuk-do (복분자 비가림 하우스 토양 중 염류집적 요인과 물리적 제염효과)

  • Chung, Byung-Yeoup;Lee, Kang-Soo;Kim, Myung-Kon;Choi, Young-Hee;Kim, Moo-Key;Cho, Jae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.310-317
    • /
    • 2008
  • This study was carried out to investigate the factors of desalinization of the rainfall interception culture soils of Rubus sp. in Gochang-gun, Jeollabuk-do. Soil samples were collected from 85 different sites of the rainfall interception culture soils of Rubus sp. in Gochang-gun, Jeollabuk-do. The electrical conductivity in paste saturation of rainfall interception culture soils ranged from $1.0\sim28.4dS\;m^{-1}$ (average: $4.8dS\;m^{-1}$) and salt affected soil which EC was higher than $4dS\;m^{-1}$, covered nearly 55% of all field surveyed. Salts in rainfall interception culture soils were accumulated by increasing the cultivation period. Electrical conductivity in rainfall interception culture soils was positively correlated with water soluble anions such as chloride ion ($r=0.85^{**}$), nitrate ion ($r=0.94^{**}$), phosphate ion ($r=0.88^{**}$), and sulfate ion ($r=0.84^{**}$), respectively. As a result of desalinization experiments carried out by water management practices, the rinsing method was more effective than leaching method.

Release of Ammonia Odor from AAFA (Ammonia Adsorbed Fly Ash) by Installation of NOx Reduction System

  • Kim, Jae-kwan;Park, Seok-un;Lee, Hyun-dong;Chi, Jun-wha
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.437-445
    • /
    • 2016
  • This paper discussed the effect of ammonia concentration adsorbed on fly ash for the ammonia emission as AAFA (Ammonia Adsorbed Fly Ash) produced from coal fired plants due to operation of NOx reduction technologies was landfilled with distilled or sea water at closed and open systems, respectively. Ammonia bisulfate and sulfates adsorbed on fly ash is highly water soluble. The pH of ammonium bisulfate and sulfate solution had significant effect on ammonia odor emission. The effect of temperature on ammonia odor emission from mixture was less than pH, the rate of ammonia emission increased with increased temperature when the pH conditions were kept at constant. Since AAFA increases the pH of solution substantially, $NH_3$ in the ash can release the ammonia order unless it is present at low concentration. $NH_4{^+}$ ion is unstable in fly ash and water mixtures of high pH at open system, which is changed to nitrite or nitrate and then released as ammonia gas. The proper conditions for < 20 ppm of ammonia concentration released from the AAFAs landfilled in ash pond were explored using an open system with sea water. It was therefore proposed that optimal operation to collect AAFA of less than 168 ppm ammonia at the electrostatic precipitator were controlled to ammonia slip with less than 5 ppm at SCR/SNCR installations, and, ammonia odor released from mixture of fly ash of 168 ppm ammonia with sea water under open system has about 20 ppm.

Physical, Chemical and Optical Properties of Fine Aerosol as a Function of Relative Humidity at Gosan, Korea during ABC-EAREX 2005

  • Moon, Kwang-Joo;Han, Jin-Seok;Cho, Seog-Yeon
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.129-138
    • /
    • 2013
  • The water uptake by fine aerosol in the atmosphere has been investigated at Gosan, Korea during ABC-EAREX 2005. The concentration of inorganic ion and carbon components, size distribution, and light scattering coefficients in normal and dry conditions were simultaneously measured for $PM_{2.5}$ by using a parallel integrated monitoring system. The result of this study shows that ambient fine particles collected at Gosan were dominated by water-soluble ionic species (35%) and carbonaceous materials (18%). In addition, it shows the large growth of aerosol in the droplet mode when RH is higher than 70%. Size distribution of the particulate surface area in a wider size range ($0.07-17{\mu}m$) shows that the elevation of RH make ambient aerosol grow to be the droplet mode one around $0.6{\mu}m$ or the coarse mode one, larger than $2.5{\mu}m$. Hygroscopic factor data calculated from the ratio of aerosol scattering coefficients at a given ambient RH and a reference RH (25%) show that water uptake began at the intermediate RH range, from 40% to 60%, with the average hygroscopic factor of 1.10 for 40% RH, 1.11 for 50% RH, and 1.17 for 60% RH, respectively. Finally, average chemical composition and the corresponding growth curves were analyzed in order to investigate the relationship between carbonaceous material fraction and hygroscopicity. As a result, the aerosol growth curve shows that inorganic salts such as sulphate and nitrate as well as carbonaceous materials including OC largely contribute to the aerosol water uptake.

Photosynthetic characteristics and chlorophyll of Vitex rotundifolia in coastal sand dune

  • Byoung-Jun Kim;Sung-Hwan Yim;Young-Seok Sim;Yeon-Sik Choo
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.103-116
    • /
    • 2023
  • Background: This study analyzed the physiological adaptations of a woody plant, Vitex rotundifolia, in Goraebul coastal sand dunes from May to September 2022. Environmental factors and physiological of plants growing under field and controlled (pot) conditions were compared. Results: Photosynthesis in plants growing in the coastal sand dunes and pots was the highest in June 2022 and July 2022, respectively. Chlorophyll fluorescence indicated the presence of stress in the coastal sand dune environment. The net photosynthesis rate (PN) and Y(II) were highest in June in the coastal sand dune environment and July in the pot environment. In August and September, Y(NPQ) increased in the plants in the coastal sand dune environment, showing their photoprotective mechanism. Chlorophyll a and b contents in the pot plant leaves were higher than those in the coastal sand dune plant leaves; however, chlorophyll-a/b ratio was higher in the coastal sand dune plant leaves than in the pot plant leaves, suggesting a relatively high photosynthetic efficiency. Carotenoid content in the coastal sand dune plant leaves was higher in August and September 2022 than that in the pot plant leaves. Leaf water and soluble carbohydrate contents of the coastal sand dune plant leaves decreased in September 2022, leading to rapid leaf abscission. Diurnal variations in photosynthesis and chlorophyll fluorescence in both environments showed peak activity at 12:00 hour; however, the coastal sand dune plants had lower growth rates and Y(II) than the pot plants. Plants in the coastal sand dunes had higher leaf water and ion contents, indicating that they adapted to water stress through osmotic adjustments. However, plants growing in the coastal sand dunes exhibited reduced photosynthetic activity and accelerated decline due to seasonal temperature decreases. These findings demonstrate the adaptation mechanisms of V. rotundifolia to water stress, poor soils, and high temperature conditions in coastal sand dunes. Conclusions: The observed variations indicate the responses of the V. rotundifolia to environmental stress, and may reveal its survival strategies and adaptation mechanisms to stress. The results provide insights into the ecophysiological characteristics of V. rotundifolia and a basis for the conservation and restoration of damaged coastal sand dunes.

The influences of extraction time and pressure on the chemical characteristics of Gyejibokryeong-hwan decoctions

  • Kim, Jung-Hoon;Lee, Nari;Shin, Hyeun-Kyoo;Seo, Chang-Seob
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.1-6
    • /
    • 2014
  • Objectives : This study was aimed to compare Gyejibokryeong-hwan (GBH) decoctions produced using different pressure levels for various extraction times to find the optimal extraction conditions through extraction yield, total soluble solids content (TSSC), hydrogen ion concentration (pH), and the contents of chemical compounds. Methods : Decoctions of GBH were prepared under the pressure levels of 0 or $1kgf/cm^2$ for 30-180 min using water as extraction solvent. The extraction yield, TSSC, and pH were measured, and the amounts of the chemical compounds were determined using high performance liquid chromatography-photodiode array detector. Results : The higher pressure and longer extraction time increased the values of TSSC and extraction yield, while decreased the pH value. The decoctions produced in 180 min by pressurized method and produced in 150 min by non-pressurized method showed maximum values of extraction yield and TSSC with minimum value of pH. The amounts of chemical compounds showed variations in pressurized and non-pressurized decoction during overall extraction times. The influences of pressure and extraction time on extraction yield, TSSC, pH, and the contents of chemical compounds were confirmed by regression analysis, which showed that all extraction values were significantly affected by at least one of two extraction factors, pressure and extraction time. Conclusions : This study suggests that the pressure and extraction time can significantly affect the extraction efficiency of components from GBH decoctions. However, optimal extraction conditions could not be chosen due to the variation of the amounts of chemical compounds.

A Study on the Source Apportionment of the Atmospheric Fine Particles in Jeju area (제주지역 미세먼지의 오염원 규명에 관한 연구)

  • Hu, Chul-Goo;Yang, Su-Mi;Lee, Ki-Ho
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.217-225
    • /
    • 2003
  • Samples of size-fractionated PM10 (airborne particulate matter with aerodynamic diameter less than $10\mu\textrm{m}$) were collected at an urban site in Jeju city from May to September 2002. The mass concentration and chemical composition of the samples were measured. The data sets were then applied to the CMB receptor model to estimate the source contribution of PM10 in Jeju area. The average PM10 mass concentration was 28.80$\mu\textrm{g}/m^3$ ($24.6~33.49\mu\textrm{g}/m^3$), and the FP (fine particle with aerodynamic diameter less than $2.l\mu\textrm{m}$ fraction in PM10 was approximately 8% higher than the CP (coarse particle with aerodynamic diameter greater than $2.l\mu\textrm{m}$ and less than $10\mu\textrm{m}$ fraction in PM10. The CP composition was obviously different from the FP composition, that is, the most abundant water soluble species was nitrate ion in the FP, but sulfate ion in the CP. Also sulfur was the most dominant element in the FP, however, sodium was that in the CP. From CMB receptor model results, it was found that road dust was the largest contributor to the CP mass concentration (45% of the CP) and ammonium nitrate, domestic boiler, and marine aerosol were major sources to the CP mass. However, the secondary aerosol was the most significant contributor to the FP mass concentration (45% of the FP). In this study, it was suggested that the contributions of soil dust and gasoline vehicle became very low due to collinearity with road dust and diesel vehicle, respectively.

Determination of Analytical Approach for Ambient PM2.5 Free Amino Acids using LC-MSMS (LC-MSMS를 이용한 대기 중 PM2.5 유리아미노산 분석 방법 연구)

  • Bae, Min-Suk;Park, Da-Jeong;Lee, Kwon-Ho;Cho, Seung-Sik;Lee, Kwang-Yul;Park, Kihong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.54-63
    • /
    • 2017
  • Atmospheric nitrogen containing organic compounds(e.g. amino acids) has attracted considerable attention from the viewpoint of the oceanic biogeochemical cycle of nitrogen as well as the long range transfer. However, only a few measurements of organic nitrogen compounds have been conducted due to analytical difficulties. In this study, total of nine amino acids such as Glutamic acid, Histidine, Arginine, Tyrosine, Cystine, Valine, Methionine, Phenylalanine, Lysine have been analytically determined by Liquid Chromatography - Mass Spectrometry Mass Spectrometry (LC-MSMS). As results, Fragmentor Voltage (FV), Precursor Ion, Collision Energy, Product Ion related to individual amino acid compounds are shown. Based on the operational conditions, Lysine, Glutamine Acid, Tyrosine were analyzed during the China Oriented Smog Period. High concentrations of Lysine, Glutamine Acid, and Tyrosine are discussed with organic carbon (OC), elemental carbon (EC), and water soluble ions. The results can provide to understand the sources with aging process related to amino acids influenced by the long-range transport from the Yellow Sea area.

Seasonal Variation and Statistical Analysis of Particulate Pollutants in Urban Air (도시대기립자상물질중 오염성분의 계절적 변동 및 통계적 해석)

  • 이승일
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.2
    • /
    • pp.8-23
    • /
    • 1994
  • During the period from Mar., 1991 to Feb., 1992 66 tSP samples were collected by Hi volume air sampler at 1 sampling site in Seoul and the amount of concentration of 21 components(SO$_{4}$$^{2-}$, NO$_{3}$$^{-}$, NH$_{4}$$^{+}$, Cl$^{-}$, Al, Ba, Ca, Cd, Cr, Cu, Fe, It Mg, Mn, Na, Ni, Pt Si, Ti, Zn, Zr ) were measured. And monthly and seasonal variation were surveyed and the principal component analysis( PCA ) were carried out with respect to these amount of pollutants, minimum of visibility and radiation on a horizontal surface. The total amount of soluble ion in water was high in order o(SO$_{4}$$^{2-}$> NO$_{3}$$^{-}$> N%'>Cl$^{-}$ and metal ion was high in order of Na> Ca>Si> Fe> Al> K> Mg> Zn> Pb> Cu>Ti> Mn > Ba> Cr> Zr> Ni> Cd. There was Seasonal variation in concentration for SO$_{4}$$^{2-}$, NH$_{4}$$^{+}$, Cl$^{-}$, Na, Al, Ca, Bt Mg, Fe and Si. It was assumed that the components of the highest concentration on April were depend on yellow sand and the frequency of wind velocity and direction. As the results of PCA, the amount of pollution components was able to characterized with two principal components(Z$_{1}$, Z$_{2}$ ). The first principal components Z$_{1}$ was considered to be a factor indicating the pollutants originated from natural generation and The second principal components Z$_{2}$ was considered to be a factor indicating the pollutants originated from human work. The monthly concentration of pollutants in ISP, minimum of visibility and radiation on a horizontal surface was possible to evaluate by the use of these two principal components Z$_{1}$ and Z$_{2}$ .

  • PDF