• Title/Summary/Keyword: Water sensitive urban design

Search Result 9, Processing Time 0.028 seconds

A Study on Application of LID Technology for Improvement of Drainage Capacity of Sewer Network in Urban Watershed (도시 유역의 우수관망 통수능 개선을 위한 LID 기술 적용 연구)

  • Baek, Jongseok;Kim, Baekjoong;Lee, Sangjin;Kim, Hyungsan
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.617-625
    • /
    • 2017
  • Both domestic and overseas urban drainage systems have been actively researched to solve the problems of urban flash floods and the flood damage that is caused by local downpours. Recent urban planning has been designed to better manage the floods of decentralized rainfall-management systems, and the installation of green infrastructure and low-impact development (LID) facilities at national ministries has been recommended. In this study, we use the EPA SWMM model to construct a decentralized rainfall-management network for each small watershed, and we analyze the effect of the drainage-capacity improvement from the installation of the LID technologies in vulnerable areas that replaces the network-expansion process. In the design of the existing urban piping systems, it is common to increase the pipe size due to the increment of the impervious area, the steep terrain, and the sensitive entrance-ramp junction; however, the installation of green infrastructure and LID facilities will be sufficient for the construction of a safe urban drainage system. The applications of LID facilities and green infrastructure in urban areas can positively affect the recovery of the corresponding water cycles to a healthy standard, and it is expected that further research will occur in the future.

Assessing the resilience of urban water management to climate change

  • James A. Griffiths
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.32-32
    • /
    • 2023
  • Incidences of urban flood and extreme heat waves (due to the urban heat island effect) are expected to increase in New Zealand under future climate change (IPCC 2022; MfE 2020). Increasingly, the mitigation of such events will depend on the resilience of a range Nature-Based Solutions (NBS) used in Sustainable Urban Drainage Schemes (SUDS), or Water Sensitive Urban Design (WSUD) (Jamei and Tapper 2019; Johnson et al 2021). Understanding the impact of changing precipitation and temperature regimes due climate change is therefore critical to the long-term resilience of such urban infrastructure and design. Cuthbert et al (2022) have assessed the trade-offs between the water retention and cooling benefits of different urban greening methods (such as WSUD) relative to global location and climate. Using the Budyko water-energy balance framework (Budyko 1974), they demonstrated that the potential for water infiltration and storage (thus flood mitigation) was greater where potential evaporation is high relative to precipitation. Similarly, they found that the potential for mitigation of drought conditions was greater in cooler environments. Subsequently, Jaramillo et al. (2022) have illustrated the locations worldwide that will deviate from their current Budyko curve characteristic under climate change scenarios, as the relationship between actual evapotranspiration (AET) and potential evapotranspiration (PET) changes relative to precipitation. Using the above approach we assess the impact of future climate change on the urban water-energy balance in three contrasting New Zealand cities (Auckland, Wellington, Christchurch and Invercargill). The variation in Budyko curve characteristics is then used to describe expected changes in water storage and cooling potential in each urban area as a result of climate change. The implications of the results are then considered with respect to existing WSUD guidelines according to both the current and future climate in each location. It was concluded that calculation of Budyko curve deviation due to climate change could be calculated for any location and land-use type combination in New Zealand and could therefore be used to advance the general understanding of climate change impacts. Moreover, the approach could be used to better define the concept of urban infrastructure resilience and contribute to a better understanding of Budyko curve dynamics under climate change (questions raised by Berghuijs et al 2020)). Whilst this knowledge will assist in implementation of national climate change adaptation (MfE, 2022; UNEP, 2022) and improve climate resilience in urban areas in New Zealand, the approach could be repeated for any global location for which present and future mean precipitation and temperature conditions are known.

  • PDF

Analysis of Non-Point Source Pollution Reduction using Water Sensitive Urban Design in Gimhae, South Korea (김해시 물 순환 개선 도시계획에 의한 비점오염물질 저감효과 분석)

  • Jung, Kang-Young;Kim, Shin;Kwon, Hun-Gak;Yang, Duk Seok;Kim, Kyosik;Jang, Kwang-Jin;Shin, Dong-Seok;Ahn, Jung-Min
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1499-1509
    • /
    • 2016
  • This study was performed to analyze the effects of a water circulation green area plan on non-point source pollution in Gimhae South Korea. A quantitative analysis of Arc-GIS data was conducted by applying a watershed model based on Fortran to investigate the changes to direct runoff and pollution load. Results showed that prior to the implementation of the water circulation green area plan in Gimhae, direct runoff was $444.05m^3/year$, total biological oxygen demand (BOD) pollution load was 21,696 kg/year, and total phosphorus (TP) pollution load was 1,743 kg/year. Implementation of the development plan was found to reduce direct runoff by 2.27%, BOD pollution load by 1.16% and TP pollution load by 0.19% annually. The reduction in direct runoff and non-point source pollution were attributed to improvements in the design of impermeable layers within the city.

CLASSIFICATION OF AQUATIC AREAS FOR NATURAL AND MODIFIED RIVERS

  • Cheong, Tae-Sung;Seo, Il-Won
    • Water Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.33-48
    • /
    • 2001
  • For the design of suitable aquatic habitats and habitat management purposes, sensitive descriptors for aquatic areas were identified and analyzed. The classification system of the aquatic areas were developed for natural streams and modified streams in Korea. Relationships among the descriptors of an aquatic area such as channel width, meander wave length, and arc angle have been defined. The analysis indicates that the total mean sinuosity is 1.25 for the main channels of natural streams, whereas the mean value of the sinuosity of modified streams is 1.14. The mean values of the total area, the width, and the length for the sandbars of natural streams are larger than those of modified streams.

  • PDF

Optmized Design for Flood Mitigation at Sea Side Urban Basin (해안 도시유역의 수재해 저감설계 최적화 기법 연구)

  • Kim, Won Bum;Kim, Min Hyung;Son, kwang Ik;Jung, Woo Chang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.267-267
    • /
    • 2016
  • Extreme events, such as Winnie(1987), Rusa(2002), Maemi(2003) at sea-side urban area, resulted not only economic losses but also life losses. The Korean sea-side characterisitcs are so complicated thar the prediction of sea level rise makes difficult. Geomophologically, Korean pennisula sits on the rim of the Pacific mantle so the sea level is sensitive to the surges due to earth quake, typoon and abnormal climate changes. These environmetns require closer investigation for the preparing the inundatioin due to the sea level rise with customized prediction for local basin. The goal of this research is provide the information of inundation risk so the sea side urban basin could be more safe from the natural water disastesr.

  • PDF

Development of technical guidelines for hydrologic cycle in urban catchment (도시유역 물순환 해석 기술지침 개발)

  • Kim, Hyeon-Jun;Jang, Cheol-Hee;Noh, Seong-Jin;Cho, Han-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1630-1634
    • /
    • 2007
  • 도시유역에서의 장기간에 대한 물순환 해석 기술은 도시하천의 복원 및 건천화 방지 사업의 점증적인 요구에 따라 필수적으로 확보하여야 하는 기술이지만, 관련 연구와 실무에서의 이해도는 미진하다. 따라서, 사업의 계획과 실무 설계를 위하여 도시유역의 물순환에 대한 이해와 기술을 지원할 수 있는 체계적인 지침이 필요하다. 외국의 사례를 살펴보면 일본의 경우 1995년 건설성의 주요 정책으로 "도시에서 적정한 물순환계 재생에의 노력"을 추진하였으며, "도시의 물순환 재생 구상 책정 매뉴얼"을 작성하여 사례 연구로 6개 유역을 대상으로 검토하였고, 2000년에는 "도시유역 물순환계의 정량화 방안"을 우수저류침투기술협회에서 주관하여 물순환계 재생구상 또는 물순환계 마스터플랜을 수립함에 있어서 필요로 하는 물순환계의 해석적인 평가방법의 해설서를 발간하였다. 호주의 경우는 1999년부터 WSUD(Water Sensitive Urban Design)란 개념을 도입하여, 정부 및 각 지방별로 프로그램을 진행하고 있으며, 지침서와 기술지도서를 작성하여 교육을 하고 실무에 활용하고 있고, 사례 연구와 학술회의를 통하여 기술 교류를 활발히 하고 있다. 자연적인 요소와 인공적인 요소가 복잡하게 조합되어있는 도시지역의 물순환의 상태를 파악하기 위해서는 유역의 자연특성과 사회특성 등에 관한 기초 자료의 수집이 선행되어야 하며, 다양한 관측결과를 기초로 물 순환계의 구조, 인과관계를 알기 위해, 또 물순환계 구성요소의 일부가 변화한 경우 다른 부분에 미치는 영향을 정량적으로 평가하기 위해서는 모델링이 필요하다. 또한 이 같은 해석 모형을 이용하여 여러 가지 물순환 개선 정책의 효과를 평가하고 그 결과를 시각적으로 나타내는 것이 가능하다면 정책의 입안에 관계하는 사람들에 있어 공통의 의사결정 지원 도구가 될 것이다. 따라서, 본 연구에서는 도시유역의 물순환 해석을 위한 일련의 과정, 즉 자료의 조사 및 취득에서부터 물순환 해석 모형을 이용한 정량적 현황파악, 물순환 개선 기법 및 평가를 수행함에 있어 주요 착안점 및 실무에서의 기술적 가이드를 제공하고자 하였으며, 보다 세밀한 도시유역의 물순환 해석을 위하여 우리나라와 일본에서 적용이 활발한 물리적 기반의 분포형 모형(WEP, SHER, SWMM)의 적용사례를 통하여 국내 도시하천의 물순환 해석에 활용함에 있어서의 실질적인 적용절차 등을 제시하고자 하였다.

  • PDF

Environmental Restoration and Water Quality Management Modeling of Coastal Area by Reuse of Treated Wastewater (하수처리수 재이용에 따른 하천과 해역의 환경복원 및 수질관리 모델링)

  • Lee, Dae-In;Yoon, Yang-Ho;Park, Il-Heum;Lee, Gyu-Hyong;Cho, Hyeon-Seo
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.505-521
    • /
    • 2007
  • This study estimated response of water duality and pollutant behavior according to the discharge and reuse of treated wastewater by three-dimensional eco-hydrodynamic model, and suggest plan that water quality management and environmental restoration in the coastal area including urban stream of Yeosu, Korea. Dispersions of low-saline water and COD by treated wastewater loads (design facility capacity, about $110,000m^3/d$) were very limited in near of effluent site. Nutrients, however, increase compared to the other water quality factors, especially total nitrogen was very sensitive to input loads. When reuse some of treated wastewater to Yeondeung stream, nitrogen was big influence on estuarine water quality. Although current characteristics of treated wastewater such as discharge and water quality were negligible to the change of marine environment, effluent concentration of COD, TN and TP, especially 40% of TN, are reduced within the allowable pollutant loads for satisfy environmental capacity and recommended water duality criteria. Also, controls of input point/non-point sources to Yeondeung stream and base concentration of pollutants in coastal sea itself are very necessary.

Monitoring Vegetation Structure Changes in Urban Wetlands (도시 내 습지의 식생구조 변화 모니터링)

  • Kim, Na-Yeong;Nam, Jong-Min;Lee, Gyeong-Yeon;Lee, Kun-Ho;Song, Young-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.135-154
    • /
    • 2023
  • Urban wetlands provide various ecosystem services and are subject to restoration and creation projects due to their increased value in the context of climate change. However, the vegetation structure of wetlands is sensitive to environmental changes, including artificial disturbances, and requires continuous maintenance. In this study, we conducted a vegetation survey of three wetlands created as part of a project to restore urban degraded natural ecosystems and monitored the quantitative changes in wetland vegetation structure using an unmanned aerial vehicle. The vegetation survey revealed 73 species in Incheon Yeonhui wetland, and the change in vegetation composition based on wetland occurrence frequency was 11.5% on average compared to the 2018 vegetation survey results. The vegetation survey identified 44 species in Busan Igidae wetland, and the proportion of species classified as obligate upland plants was the highest at 48.8% among all plants, while the proportion of naturalized plants accounted for 15.9% of all plants. The open water surface area decreased from 10% in May 2019 to 6.7% in May 2020. Iksan Sorasan wetland was surveyed and 44 species were confirmed, and it was found that the proportion of facultative wetland plant decreased compared to the 2018 vegetation survey results, and the open water surface area increased from 0.4% in May 2019 to 4.1% in May 2020. The results of this study showed that wetlands with low artificial management intensity exhibited a tendency for stabilization of vegetation structure, with a decrease in the proportion of plants with high wetland occurrence frequency and a relatively small number of new species. Wetlands with high artificial management intensity required specific management, as they had a large change in vegetation structure and a partially high possibility of new invasion. We reaffirmed the importance of continuous monitoring of vegetation communities and infrastructure for wetlands considering the function and use of urban wetlands, and restoration stages. These research results suggest the need to establish a sustainable wetland maintenance system through the establishment of long-term maintenance goals and monitoring methods that consider the environmental conditions and vegetation composition of wetlands.

A Study on the Visual Preference of Users according to the Location of Benches at Urban Community Parks (도시공원에서 벤치의 배치장소에 따른 이용자의 시각적 선호도에 관한 연구)

  • 유상완;문석기;권상준
    • Archives of design research
    • /
    • v.13 no.2
    • /
    • pp.95-102
    • /
    • 2000
  • The purpose of this study is to find out what is the preference of users according to the location of benches at urban community parks. This location of benches is seperated into 4 patterns according to arranging pattern of water space, a walk, pergola and shelter, greenspace. To investigate the visual preference is examined by analyzing visual volume of 4 patterns. Results are as follows; 1. Factor analysis by the total data showed that 5 factors explain 60.40 percent of total variance of the location of bench visual character. They were classified by the sensitive factor, visual factor, physical-individual factor, distinct factor, density factor. Among 5 factors, the sensitive factor which represented psychological reaction was appreciated to be highest. 2. Most of 20 items showed the following scores of mean values in sementic differential experiment : Spot 1->Spot 4-> 2-> 3. The mean values between arrangement place locational differences showed significantly, that could explain to be a violent contrast between the natural factors(weater space, green space, etc) and the artificial factors (around of pergola, shelter, etc)

  • PDF