• Title/Summary/Keyword: Water sampling

Search Result 1,241, Processing Time 0.044 seconds

Biological Studies On Arkshell Culture I. Distribution Of Drifting Larvae Of Te Arkshell, Anadara broughtonii Schrenck (피조개의 양식에 관한 생물학적 연구 I.부유유생의 분포)

  • Yoo, Sung Kyoo;Park, Kyung Yang;Yoo, Myung Sook
    • 한국해양학회지
    • /
    • v.12 no.2
    • /
    • pp.75-81
    • /
    • 1977
  • Distribution of drifting larvae of Anadara broughtnoii SCHRENCK was studied based on the planktonic sampling which has been collected in fifteen sampling areas of southern coast of Korea and Ulsan Bay during summer season from 1973 to 1977. Vertical and horizontal occurrence was analyzed related to the environmental factors such as surface water temperature, current velocity and depth of water column. High density of the larvae was observed in the Chinhae Bay which included the sampling areas Rampo, Sockcheon, Majeon, Changpo, Dangdong, Bedun, Changchoa, and Wonmun. Maximum occurrence of the farvae was accompanied with the highest water temperature of the summer season, and it was usually August when the water temperature was over 27$^{\circ}C$. In August, 1975, the highest density of the farvae was observed, when the mean surface water temperature was the highest compared to those of other years. The first appearence of the drifting larvae was also related to the surface water temperature. Each year the larae begin to appear from the late July and the ready-to-fall larvae appear in abundance from the mid-August. Vertical distribution patterns of the larvae are closely related to the depth of the water column as well as to the current velocity. In shallow water the larvae tend to aggregate in the bottom layer, while they are diffused to some extent in deep water. In shallow water column ( 8m) more or less 75% of the total larvae individuals was observed in the lower 4m layer and in deep water column ( 16m) only 45% of those was found in the lower 4m layer. In the water of lower velocity a large fraction of the larvae population is distributed in the lower depth layer.

  • PDF

Effects of Sampling Frequency During Storm Period on Estimation of Pollutant Load from Paddy Field (논에서 일주기 수질조사시 채수빈도가 오염부하량 산정에 미치는 영향)

  • Han, Kuk-Heon;Yoon, Kwang-Sik;Cho, Jin-Goo;Cho, Jae-Young
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.283-286
    • /
    • 2003
  • In order to examine effects of sampling frequency during rainfall-runoff process from paddy field on the estimation of pollution load, EMCs of several water sampling frequencies were examined. It was found that the difference of EMCs between one time sampling and two hours consecutive sampling during storm event showed $34.1{\sim}-19.1%$ for T-N, $55.4{\sim}-27.3%$ for T-P, $68.5{\sim}-41.0%$ for the SS, respectively. Five times sampling reduced difference of EMCs compared to those two hours interval sampling to $15.2{\sim}-15.2%$ for T-N, $20.0{\sim}-26.2%$ for T-P, $28.6{\sim}-35.7%$ for the SS, respectively.

  • PDF

Analysis of Pollutant Characteristics in Nakdong River using Confirmatory Factor Modeling (확인적 요인모형을 이용한 낙동강 유역의 오염특성 분석)

  • Kim, Mi-Ah;Kang, Taegu;Lee, Hyuk;Shin, Yuna;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.84-93
    • /
    • 2012
  • The study was conducted to analyze the spatio-temporal changes in water quality of the major 36 sampling stations of Nakdong River, depending on each station, season using the 17 water quality variables from 2000 to 2010. The result was verified to interpret the characteristics of water quality variables in a more accurate manners. According to the Principal component analysis (PCA) and Exploratory factor analysis (EFA) results; the results of these analyses were identified 4 factors, Factor 1 (nutrients) included the concentrations of T-N, T-P, $NO_{3}-N$, $PO_{4}-P$, DTN, DTP for sampling station and season, Factor 2 (organic pollutants) included the concentrations of BOD, COD, Chl-a, Factor 3 (microbes) included the concentrations of F.Coli, T.Coli, and Factor 4 (others) included the concentrations of pH, DO. The results of a Cluster analysis indicated that Geumhogang 6 was the most contaminated site, while tributaries and most of the down stream sites of Nakdong River were mainly affected by each nutrients (Factor 1) and organic pollutants (Factor 2). The verification consequence of Confirmatory factor analysis (CFA) from Exploratory factor analysis (EFA) result can be summarized as follows: we could find additional relations between variables besides the structure from EFA, which we obtained through the second-order final modeling adopted in CFA. Nutrients had the biggest impact on water pollution for each sampling station and season. In particular, It was analyzed that P-series pollutant should be controlled during spring and winter and N-series pollutant should be controlled during summer and fall.

Assessment for Water Quality of the Osan Stream using Epilithic Diatom Assemblage Index to Organic Pollution(DAIpo) (부착규조 군집과 유기오탁지수를 이용한 오산천의 수질평가)

  • Kim Baik-Ho;Choi Hwan-Seok;Kim Mi-Yeon;Yoo Hyung-Bin
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.2
    • /
    • pp.45-50
    • /
    • 2004
  • To investigate the epilithic diatom community and water quality of the Osan stream, water samples were collected from the eight stations from April to September 2003. Sampling was two times before and after heavy rain. Total 52 diatom were identified and divided into 12 saproxenosus taxa, 6 saprophilous taxa and 34 indifferent taxa, respectively. The DAIpo values higher after heavy rain than before that. According to tolerance degree to the organic water pollution, all sampling stations ranged from $\alpha$-oligosaprobic to $\alpha$-mesosaprobic. Thus, the result indicates that the water quality of Osan stream is gradually improved by heavy rain.

Characteristics of Nonpoint Source Pollutant Loads from Forest watershed with Various Water Quality Sampling Frequencies (수질샘플빈도에 따른 산림유역의 비점원오염부하특성)

  • Shin, Min-Hwan;Shi, Yong-Chul;Heo, Sung-Gu;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.65-71
    • /
    • 2008
  • A monsoon season monitoring data from June to September, 2005 of a small forested watershed located at the upstream of the North Han River system in Korea was conducted to analyze the flow variations, the NPS pollutant concentrations, and the pollution load characteristics with respect to sampling frequencies. During the 4-month period, 1,423 mm or 79.2% of annual rainfall(1,797 mm) were occurred and more than 77%, 54% and 68% of annual T-N, $NO_3$-N and T-P loads discharged. Flow rate was continuously measured with automatic velocity and water level meters and 58 water quality samples were taken and analyzed. It was analyzed that the flow volume by random measurement varied very widely and ranged from 79% to 218% of that of continuous measurement. It was recommended that flow measurement of small forested watersheds should be continuously measured with automated flow meters to precisely measure flow rates. Flow-weighted mean concentrations of T-N, $NO_3$-N and T-P during the period were 2.114 mg/L, 0.836 mg/L, and 0.136 mg/L, respectively. T-N, $NO_3$-N and T-P loads were sensitive to the number of samples. And it was analyzed that in order to measure the pollution load within the error of 10% to the true load, the rate of sampling frequency should be higher than 89.7% of the sample numbers that were required to compute the true pollution load. If it is compared to selected foreign research results, about 10 water samples for each rainfall event were needed to compute the pollution load within 10% error. It is unlikely in Korea and recommended that thorough NPS pollution monitoring studies are required to develop the standard monitoring procedures for reliable NPS pollution quantification.

A Study on the Effect of Air Pollutants in Daegu Area by Biological Indicator of Roadside (道路 指標生物을 이용한 대기오염이 植物에 미치는 영향에 관한 연구)

  • Kang, Hoe-Yang;Cha, Sang-Eun;Ha, Cheong-Gun
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.2
    • /
    • pp.29-41
    • /
    • 1988
  • This study was performed to investigate the air pollution levels in Daegu area titrough measuring of contents of water, chlorophyll, water soluble sulfur and lead metal in the leaves of roadside trees and chemical properties of soil under the urban trees. The results can be summarized as follows 1. The range of water content was from 60.4% to 74.6%. The comparisons of chlorophyll, water soluble sulfur and water content were regression equation, chlorophyll=0.1981+ 0.0040 water content (July), water soluble sulfur=3,139-0.0416 water content (July). and correlation coefficient, r=0.561 and r=0.549 respectively 2. Average contents of chlorophyll, water soluble sulfur and lead metal in the leaves of roadside tree at sampling sites were chlorophyll 0.050, 0.072mg/cm$^2$, water soluble sulfur 0.244, 0.333%, and lead metal 12.25, 12.68ppm in Oct. and Jul. respectively. 3. Correlation between chlorophyll and contents of water soluble sulfur and lead metal in the leaves of roadside tree at sampling sites were water soluble sulfur r=-0.564, -0.613 and lead metal r=-0.693, -0.699 in October and July, respectively. 4. Correlation between chlorophyll and water content, water soluble sulfur and lead metal in the leaves of tree showed positive significance.

  • PDF

Compared of Temporal and Spatial Sea Water Quality in the Southern Coasts of Korea (남해안 시.공간적 수질환경 특성 비교)

  • Cho, Eun-Seob
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.141-151
    • /
    • 2009
  • Temperature, salinity, COD, DIN (Dissolved Inorganic Nitrogen), DIP (Dissolved Inorganic Phosphorus), and Chlorophyll ${\alpha}$ obtained from the southern coastal waters during the period of 2003 to 2005 were analyzed. Variability in temperature was not found between groups in southern coastal waters, but significantly different depending on sampling sites (p<0.05). The average temperature in 2003 estimated at $18.33^{\circ}C$ that was annually increased by 2005 and significantly different based on statistics (p<0.05). Unlikely to temperature, salinity was significantly different depending on sampling sites, as well as monthly variations (p<0.05). Likewise to temperature, the value of salinity was annually increased. COD estimated at the average of $>1.7\;mg\;l^{-1}$ for three years, indicating optimal water quality. The fluctuations of nutrients were extremely shown in different sampling sites and monthly variations. Chlorophyll a recorded above $2.0{\mu}g\;l^{-1}$ which was associated with high primary phytoplankton, whereas it showed much fluctuations in temporal and spatial, In particular, Tongyong, Jaranman, Jinjuman, and Samcheonpo located in the southeast were the highest fluctuations in water quality than any other regions. The correlation between salinity/COD and nutrients/chlorophyll a was strongly negative or positive, which was possibly associated with much the introduction of run-off water as well as rainfall in summer.

A Study on Indoor Radon Concentrations in Urban Area (도시 일부지역에서의 실내 라돈농도에 관한 연구)

  • 김순애;백남원
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.89-98
    • /
    • 2002
  • This study was taken in general hospital, hotel, shopping center, underground cafe, school, house, for the purpose of investigating the distribution of indoor radon concentration in urban area, by E-PERM which approved U.S. EPA, between August and November 1999. There are two sampling Places were exceed 148 ㏃/㎥(4 pCi/L; U.S EPA remedial level), difference mean is 24.0㏃/㎥ when compared with underground vs. aboveground indoor radon concentration in the same building and ratio is 1.6, so underground area is higher than aboveground (p<0.05). Influencing factors were examined. They related to the location of sampler(detector) open or near the door is lower radon concentration than inside portion, which explains probably open area has better ventilated air and dilutes indoor radon concentration. Temperature has a negative relationship (p<0.05) with indoor radon concentration and relative humidity has a positive (p<0.05) Simultaneously to investigate water radon concentration, collected piped-water and the results were very low, which is the same in piped-water concentration other countries. In conclusion, underground indoor radon concentration is higher than aboveground. Concentration was related to sampling spot, open portion is lower than inside. Higher the temperature, lower the indoor radon concentrations. On the other hand higher the relative humidity, higher the indoor radon concentrations. Indoor radon concentration is influenced by sampling point, temperature, relative humidity.