• Title/Summary/Keyword: Water reuse system

Search Result 186, Processing Time 0.037 seconds

The status quo and developing measurement of water reuse in China

  • Li, Wei;Li, Jing;Wang, Yiwen;Zhong, Yuxiu;Liu, Hongxian;Li, Peilei
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.228-228
    • /
    • 2015
  • Water reuse plays significant role in water saving and water environmental protection, and it helps alleviate the shortage of water resources. China's water reuse was put into practice since 1980s by means of pilot and promotion in National Fifth-year Plan and other strategies. The effects of water reuse is beneficial in both economic, social and environmental aspects. But some shortcomings still undermine future development of water reuse in China. To overcome and boost water reuse, Ministry of Water Resources conducted a successive survey across China. The aim of this study is to demonstrate the current condition of water reuse in China in construction, funds, legislation, planning, policy aspects, to summarize problems and its reasons underneath, to make suggestions for further development. Basically, in 2010, China's water reuse is 2.83 billion cubic meters and the utilization rate is 10.35%. Water reuse in China has four major characteristics: the first one is water reuse differences in amount occur national-widely and North of China has the main percentage as 47.3%; the second one is water reuse is mainly in environment maintenance (42.1%) and industry cooling (29.8%); the third one is funds for water reuse station and pipe construction is main in non-fiscal budget which take percentage as 56.8%; the fourth one is progresses of administrative system, political system, price management, standard system and technologies go rapidly recently. The problems of water reuse such as lack in water reuse station, delay in pipe constriction and limits on water reuse amount still exist due to some reasons. As a think tank of Ministry of Water Resources, we give some suggestions: firstly, water reuse needs to be integrated with traditional water resources allocation; secondly, public budgets need to be strengthened and income mechanism should also be constructed; thirdly, water resources integrated administrative of city and county should be boosted and roles as water reuse need to be clear and precise; fourthly, national, provincial and regional water reuse planning should be made in time; fifthly, regulations on water reuse should be programmed as soon as possible.

  • PDF

Measurement of Irrigation water-reuse ratio for pumped storage system (양수저류시스템의 반복이용률 측정)

  • Park, Ji-Sung;Kim, Young-Hwa;Lee, Young-Il;Kim, Pil-Dong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.295-298
    • /
    • 2003
  • In this study, It classified type of irrigation water development in islands district. As result, the types which were type of reservior, fleshwater lake, pumped storage, ets. Most of islands district has developed reuse irrigation system as a pumped storage system. But, Irrigation water-reuse ratio doesn't define a basis clearly and the value of measurement for water-reuse ratio doesn't exist so far. so, we measured Irrigation water-reuse to clarify for water-reuse ratio in a pumped storage system.

  • PDF

Application of hydrology model and Monitoring on pumped-storage section in islands district (도서지역 양수저류 관개지구의 모니터링 및 수문모델 적용)

  • Kim, Young-hwa;Park, Ji-Sung;Lee, Yong-il;Han, Kuk-Heon;Kim, Chae-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.215-219
    • /
    • 2004
  • In this study, Types of irrigation water development in islands district were classified. The types were reservior, fleshwater lake, pumped storage, etc. Most of islands district has delveloped reuse irrigation system as a pumped storage system. But. Irrigation water-reuse ratio doesn't define a basis clearly and the value of measurement for water-reuse ratio doesn't exist so far. so, we measured Irrigation water-reuse to clarify for water-reuse ratio in a pumped storage system. Also, we need to develop hydrologic analysis and water balance method with characteristic factor of islands district. that make use of plan about security of agriculture water efficiently in islands district.

  • PDF

Analysis for water cycle change using SWAT model and water balance analysis depending on water reuse in urban area (SWAT모델과 물수지분석을 이용한 물재이용에 의한 도시물순환 변화 분석)

  • Kim, Young-Ran;Hwang, Seong-Hwan;Lee, Sung-Ok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.447-457
    • /
    • 2015
  • Water cycle within the human civilization has become important with urbanization. To date, water cycle in the eco-system has been the focus in identifying the degree of water cycle in cities, but in practicality, water cycle within the human civilization system is taking on an increasing importance. While in recent years plans to reuse water have been implemented to restore water cycle in cities, the effect that such reuse has on the entire water cycle system has not been analyzed. The analysis on the effect that water reuse has on urban areas needs to be go beyond measuring the cost-savings and look at the changes brought about in the entire city's water cycle system. This study uses a SWAT model and water balance analysis to review the effects that water reuse has on changes occurring in the urban water cycle system by linking the water cycle within the eco-system with that within the human civilization system. The SWAT model to calculate the components of water cycle in the human civilization system showed that similar to measured data, the daily changes and accumulative data can be simulated. When the amount of water reuse increases in urban areas, the surface outflow, amount of sewer discharge and the discharged amount from sewage treatment plants decrease, leading to a change in water cycle within our human civilization system. The determinant coefficients for reduced surface outflow amount and reduced sewer discharge were 0.9164 and 0.9892, respectively, while the determinant coefficient for reduced discharge of sewage treatment plants was 0.9988. This indicates that with an increase in water reuse, surface flow, sewage and discharge from sewage treatment plants all saw a linear reduction.

Investigation of Effluent of Wastewater Treatment Plants for Agriculture Reuse (하수처리수의 농업용수 재이용 활용자원조사)

  • Lee, Kwang-Ya;Kim, Hae-Do;Chung, Kwang-Kun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1959-1963
    • /
    • 2006
  • As an alternative water resources development, wastewater reuse for agricultural and instream uses are expected to be fond of the limelight. In order to find the feasible reuse system scheme for reclaimed water in real field, existing reuse sites were investigated for water quantity, quality, and irrigation scheme. From the results, most of sites supplied reclaimed water with a request of the users(farmers) and reuse techniques for agricultural use were to be needed in the sites which supplied over yearly $1.0{\times}10^6$ ton as agricultural water.

  • PDF

Economic Analysis of Wastewater Reuse Systems for Agricultural Irrigation using a System Dynamics Approach (시스템 다이내믹스를 이용한 농업용수 재이용시스템 경제성 분석)

  • Jeong, Han Seok;Suh, Kyo;Jang, Tae Il;Seong, Choung Hyun;Kim, Hak Kwan;Park, Seung Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.9-20
    • /
    • 2013
  • Many studies have reported additional treatment is needed to use wastewater for agricultural purpose. Economic considerations should be taken into account to establish infrastructure for agricultural reuse because of a large amount of water use in irrigation and relatively low water quality requirement. The objective of this study was to conduct economic analysis of wastewater reclamation and reuse systems for agriculture. A system dynamics approach considering complexity and dynamics in the wastewater reuse systems was used for the economic analysis, which are related with social, environmental, and economic problems. Sensitivity and benefit cost analysis for wastewater reuse systems was conducted through the established economic assessment model. The result of sensitivity analysis showed that water resources development and installation cost were the most sensitive for total benefits and costs, respectively. The scenario-based test of the organized economic assessment model shows marginal cost ranges and enables decision-makers to decide reasonable cost for the wastewater reuse systems for agriculture.

Development of GIS Information System for Agricultural Reuse of Effluent (하수처리수의 농업용수 재이용 정보 관리시스템 개발)

  • Kim, Hae-Do;Lee, Kwang-Ya;Chung, Kwang-Kun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.535-539
    • /
    • 2006
  • GIS-based integrated management system was developed for the treated wastewater to be reused as agricultural water. The major scopes of this research includes developing different types of system such as connecting data of wastewater treatment plants to data of hydraulic structures and paddy field ; separating spatial data into the watershed boundary and the agricultural water boundary ; and estimating applicable site for reuse. This system can enable to provide more scientific support to manage information of effluent and agricultural data utilizing GIS techniques.

  • PDF

Development of a Zero Discharge and Reuse System for Rural Areas (농촌지역을 위한 무방류 재이용시스템 개발)

  • Hong, Min;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.91-96
    • /
    • 2009
  • This study describes a zero discharge and reuse system developed for rural areas. The purpose of the system is decontamination of used irrigation water for down-stream usage and reuse of wastewater in rural villages for preventing water shortage problem expected to happen in near future. The system consists of anoxic, FES (Ferrous Electricity System), Oxic, Cralifier processes. The main feature of the system is to remove phosphorous by using Fe-ionizing module. Indoor experiments were undertaken with a trial product of the system to test its performance. The removal capacities of T-P, T-N, and BOD were examined. Also the proper time for the replacement of iron plate module was tested as well as the efficiency of T-P removal rate based on the usage of an automatic washing system for the iron plate. As results, the system showed very good water purification performances through obtaining the results of over 90% removal rates from T-P, BOD, and 67% from T-N. The proper time period for replacement of iron plate was maximum 2 years, and also efficiency of T-P removal rate found to be greatly influenced by the usage of an automatic washing system from the test.

Assessment of Field Applicability of a Zero Discharge and Reuse System (무방류 재이용 시스템 현장 적용성 평가)

  • Cho, Kyung-Sook;Lee, Kwang-Ya
    • Current Research on Agriculture and Life Sciences
    • /
    • v.29
    • /
    • pp.75-81
    • /
    • 2011
  • This study performed field examinations of a zero discharge and reuse system developed by Hong and Choi(2009). The system installed one of villages located in Hyoryeong-myeon, Gunwee-gun for the experiments. The zero discharge and reuse system consists of anoxic, FES (Ferrous Electricity System), Oxic, Cralifier processes for water treatments. The main feature of the system is to remove phosphorous by using Fe-ionizing module within the FES process. The water purification performances of the system were evaluated, while any defects for using the system were investigated through the field monitoring. It was found that the removal capacities of T-P, T-N, and BOD of the system meet the required water quality with outstanding performance from T-P by obtaining the results of over 90 % removal rates. The efficiency of T-P removal rate of the system found to be greatly influenced by whether using an automatic washing system to the Fe-ionizing module and conducting replacement of iron plate within a proper period.

  • PDF

Optimization of Water Reuse System under Uncertainty (불확실성을 고려한 하수처리수 재이용 관로의 최적화)

  • Chung, Gun-Hui;Kim, Tae-Woong;Lee, Jeong-Ho;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.131-138
    • /
    • 2010
  • Due to the increased water demand and severe drought as an effect of the global warming, the effluent from wastewater treatment plants becomes considered as an alternative water source to supply agricultural, industrial, and public (gardening) water demand. The effluent from the wastewater treatment plant is a sustainable water source because of its good quality and stable amount of water discharge. In this study, the water reuse system was developed to minimize total construction cost to cope with the uncertain water demand in future using two-stage stochastic linear programming with binary variables. The pipes in the water reuse network were constructed in two stages of which in the first stage, the water demands of users are assumed to be known, while the water demands in the second stage have uncertainty in the predicted value. However, the water reuse system has to be designed now when the future water demands are not known precisely. Therefore, the construction of a pipe parallel with the existing one was allowed to meet the increased water demands in the second stage. As a result, the trade-off of construction costs between a pipe with large diameter and two pipes having small diameters was evaluated and the optimal solution was found. Three scenarios for the future water demand were selected and a hypothetical water reuse network considering the uncertainties was optimized. The results provide the information about the economies of scale in the water reuse network and the long range water supply plan.