• Title/Summary/Keyword: Water retention characteristics

Search Result 276, Processing Time 0.023 seconds

A Study on Non-point Source Pollutants from Pavement of Coastal Area and Guidance for Selecting BMP (연안지역 포장면 비점오염물질 유출 및 최적관리방안 시설의 선정을 위한 가이던스에 관한 연구)

  • Ko, Woong;Park, Kisoo;Chen, Yaoping;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.543-553
    • /
    • 2013
  • In Korea, there have been many studies and progresses on various types of pilot scale or commercialized field scale Best Management Practices(BMP) during the last 10 years. Runoff characteristics of diffuse pollutants from different land uses are well identified and documented. However, for the coastal area connected directly with shoreline, runoff patterns and management schemes of non-point pollution were not fully studied. Recently, coastal area is emerging as a new development axis especially in west coast side of Korea such as Incheon city and Chungnam province, thus urbanized area rapidly increased but there are no buffer zones and BMP facilities to aim at preventing direct discharge of the first flush into coastal sea and beaches. In this study, parking area in Deacheon harbor, Boryeong City in Chungnam Province was selected and rainfall runoff was monitored for two year period in order to examine run-off features from which proper type of BMP suitable for coastal area is proposed. Coastal area usually has a low ground water level and consists of plain land, so that large scale BMP such as storm water retention pond and wetland requiring great excavation works is not best management plan. In addition, monitoring study shows that storm water from the paved parking area has a high salinity compared with those in storm water from the inland. High salinity is detrimental for the vegetation. Therefore, BMP employing least vegetative cover and also in terms of maintenance is a good option such as infiltration trench and porous pavement.

Sustained release of alginate hydrogel containing antimicrobial peptide Chol-37(F34-R) in vitro and its effect on wound healing in murine model of Pseudomonas aeruginosa infection

  • Shuaibing Shi;Hefan Dong;Xiaoyou Chen;Siqi Xu;Yue Song;Meiting Li;Zhiling Yan ;Xiaoli Wang ;Mingfu Niu ;Min Zhang;Chengshui Liao
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.44.1-44.17
    • /
    • 2023
  • Background: Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. Objective: This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. Methods: Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. Results: The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). Conclusions: Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.

Quality Characteristics and Palatability of Ground Pork Meat Containing Lotus Leaf and Root Extracts (연잎 및 연근 추출물을 함유한 분쇄돈육의 품질 특성 및 기호성)

  • Lee, Kyung-Soo;Kim, Ju-Nam;Jung, In-Chul
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.6
    • /
    • pp.851-859
    • /
    • 2012
  • This study was conducted to investigate the effects of addition of lotus (Nelumbo nucifera) leaf and root extracts on the quality and sensory characteristics of ground pork meat. Four types of ground pork were evaluated: 5% ice water added (T0), 5% lotus leaf extract added (T1), 2.5% lotus leaf extract and 2.5% root extract added (T2), and 5% lotus root extract added (T3). There were no significant differences in moisture, protein, fat, ash, cooking yield, moisture retention, water holding capacity, reduction in diameter, a-value (redness), b-value (yellowness), VBN content (volatile basic nitrogen), hardness, springiness, cohesiveness or chewiness. The fat retention was highest in T0 (p<0.05). The L-values (lightness) of T2 and T3 were higher than those of T0 and T1 (p<0.05). The pH was lowest in T1 (p<0.05). The TBARS (2-thiobarbituric acid reactive substances) values of T0, T1, T2, and T3 were 0.47, 0.17, 0.21, and 0.32 mgMA/kg, respectively, with that of T1 being significantly lower than those of the other samples (p<0.05). The contents of free amino acids related to sweet taste was 642.5 ppm for T1, which was highest among the samples (p<0.05). The flavor was highest in T1 (p<0.05). These results suggest that lotus leaf extracts improved the lipid oxidation and flavor of ground pork meat.

Physicochemical Characteristics of Ground Pork with Safflower Seed Powder as an Animal Fat Replacer (동물성지방 대체제로서 홍화씨(Carthamus tinctorius L.)를 첨가한 분쇄돈육의 이화학적 품질특성)

  • Park, Kyung-Sook;Choi, Young-Joon;Moon, Yoon-Hee;Park, Hyun-Suk;Kim, Min-Ju;Jung, In-Chul
    • Journal of Life Science
    • /
    • v.22 no.7
    • /
    • pp.928-935
    • /
    • 2012
  • This study was carried out to investigate the effect of the addition of safflower seed (Carthamus tinctorius L.) on the physicochemical properties of ground pork as an animal fat replacer. Three types of ground pork were evaluated: 20% pork fat added (control), 10% pork fat and 10% safflower seed powder added (10% SS), and 20% safflower seed powder added (20% SS). The moisture, protein, and ash contents were highest in 20% SS, and the fat content was highest in the control (p<0.05). The cooking yield, moisture retention, fat retention, and water-holding capacity were highest in 20% SS, and the control showed a reduction in the diameter (p<0.05). The external and internal L-, a-, and b-values of the control were higher than those of the 10% SS and the 20% SS (p<0.05). The cholesterol content of the control, the 10% SS, and the 20% SS was 50.85, 21.77, and 17.91 mg/100 g, respectively, and that of the 20% SS was lowest among the samples (p<0.05). The linoleic acid content of the control, the 10% SS, and the 20% SS was 28.68%, 41.04%, and 54.26%, respectively. The total unsaturated fatty acid content of the control, the 10% SS, and the 20% SS was 50.53%, 55.76%, and 64.93%, respectively. The linoleic acid and the total unsaturated fatty acid content were highest in the 20% SS (p<0.05). There was no significant difference in amino acid composition.

Identification of NMR Data for ginsenoside Rg1 (Ginsenoside Rg1의 NMR 데이터 동정)

  • Lee, Dae-Young;Cho, Jin-Gyeong;Lee, Min-Kyung;Lee, Jae-Woong;Park, Hee-Jeong;Lee, Youn-Hyung;Yang, Deok-Chun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.291-299
    • /
    • 2008
  • The fresh ginseng roots were extracted in aqueous methanol (MeOH), and the obtained extracts were partitioned using ethyl acetate (EtOA), n-butanol (n-BuOH), and water, successively. The repeated silica gel column chromatography for n-BuOH fraction afforded a purified ginsenoside $Rg_1$. The physico-chemical, spectroscopic and chromatographic data of ginsenoside $Rg_1$, such as crystallization characteristics, melting point, specific rotation, infrared spectrometry (IR) data, fast atom bombardment/mass spectrometry (FAB/MS) data, nuclear magnetic resonance (NMR) data, retention factor (Rf) in thin layer chromatography (TLC) experiment, and retention time (r.t.) in HPLC analysis, were measured and compared with those reported in literatures. Especially, the previous literatures reported different data for ginsenoside $Rg_1$ in the $^{1}H-$ and $^{13}C$-NMR experiments. This paper gives the exactly assigned NMR data through 2D-NMR experiments, such as $^{1}H-^{1}H$ correlation spectroscopy (COSY), hetero nuclear single quantum correlation (HSQC), and hetero nuclear multiple bond connectivity (HMBC).

On the manufacturing of WPC (Wood Plastic Composites) with Heat-Catalyst Polymerization (I) - On the characteristics of composites made from monomer Methyl MethacryIate and several commercial woods in Korea (가열(加熱)·촉매중합법(觸媒重合法)에 의한 목재(木材)·고분자복합체(高分子複合體) 제조(製造)(I) - MMA에 의한 한국산(韓國産) 주요목재(主要木材)의 복합체특성(複合體特性))

  • Cho, Nam-Seok;Jo, Jae-Myeong;Ahn, Won-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.3-16
    • /
    • 1974
  • One of the disadvantages of. wood and wood products is their hydroscopicity or dimensional instability. This is responsible for the loss of green volume of lumber as seasoning degrade. Dimensional stabilization is needed to substantially reduce seasoning defects and degrades and for increasing the serviceability of wood products. Recently, considerable world-wide attention has been drawn to the so-called Wood-Plastic Composites by irradiation-and heat-catalyst-polymerization methods and many research and developmental works have been reported. Wood-Plastic Composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC. The species examined were Mulpurae-Namoo (Fraxinus, rhynchophylla), Sea-Namoo (Carpinus laxiflora), Cheungcheung-Namoo (Cornus controversa), Gorosae-Namoo (Acermono), Karae-Namoo(Juglans mandshurica) and Sanbud-Namoo (Prunus sargentii), used as blocks of type A ($3{\times}3{\times}40cm$) and type B ($5{\times}5{\times}60cm$), and were conditioned to about 10~11% moisture content before impregnation in materials humidity control room. Methyl methacrylate (MMA) as monomer and benzoyl peroxide (BPO) as initiator are used. The monomer containing BPO was impregnated into wood pieces in the vacuum system. After impregnation, the treated samples were polymerized with heat-catalyst methods. The immersed weights of monomer in woods are directly proportionated to the impregnation times. Monomer impregnation properties of Cheungcheung-Namoo, Mulpurae-Namoo and Seo-Namoo are relatively good, but in Karae-Namoo, it is very difficult to impregnate the monomer MMA. Fig. 3 shows the linear relation between polymer retentions in wood and polymerization times; that is, the polymer loadings are increasing with polymerization times. Furthermore species, moisture content, specific gravity and anatomical or conductible structure of wood, bulking solvents and monomers etc have effects on both of impregnation of monomer and polymer retention. Physical properties of treated materials are shown in table 3. Increasing rates of specific gravity are ranged 3 to 24% and volume swelling 3 to 10%. ASE is 20 to 46%, AE 14 to 50% and RWA 18 to 40%. Especially, the ASE in relation to absorption of liquid water increases approximately with increase of polymer content, although the bulking effect of the polymerization of monomer may also be influential. WPCs from Mulpurae-Namoo and Cheungcheung-Namoo have high dimensional stability, while its of Karae-Namoo and Seo-Namoo are-very low. Table 4 shows the mechanical properties of WPCs from 6 species. With its specific gravity and polymer loading increase, all mechanical properties are on the increase. Increasing rate of bending strength is 10 to 40%, compression strength 25 to 70%, ;impact bending absorbed energy 4 to 74% and tensile strength 18 to 56%. Mulpurae-Namoo and Cheungcheung-Namoo with high polymer content have considerable high increasing rate of strengths. But incase of Karae-Namoo with inferior monomer impregnation it is very low. Polymer retention in cell wall is 0.32 to 0.70%. Most of the polymer is accumulated in cell lumen. Effective. of polymer retention is 58.59% for Mulpurae-Namoo, 26.27% for Seo-Namoo, 47.98% for Cheungcheung-Namoo, 25.64% for Korosae-Namoo, 9.96% for Karae-Namoo and 25.84% for Sanbud-Namoo.

  • PDF

Three Phases and Water Characteristics of Horticultural Substrates (원예(園藝) 상토재료(床土材料)의 삼상(三相)과 수분특성(水分特性))

  • Jo, In-Sang;Hyun, Byung-Keun;Cho, Hyun-Jun;Jang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.56-61
    • /
    • 1997
  • A study was carried out to find out the basic information in physical properties for selection and manufacturing the good seedling media through the analysis of the physical properties, such as particle size, water retention and three phases of the major horticultural substrates. Easily available water(EAW), the water contents between 1kPa and 5kPa water potental, was highest in peatmoss with 39%, and perlite 34.0%, vermiculite 16.9%, but the values of osmunda and bark were lower than 4.8%. Water buffering capacity(WBC), the water content between 5kPa and 10kPa, was 6.1% in peatmoss and 2.3% in vermiculite but it was lower than 1.0% in other substrates. To adjust the suitable range of water potential at crossing point of water and air curves to 1.5~2.5kPa, more finer materials were needed in osmunda and bark, and more coarser materials must be added to peatmoss, perlite and vermiculite. Water potentials of substrates in saturated pot condition were equivalent to 2.2kPa in peatmoss and others were ranged in 1.0kPa to 4.3kPa of water potential in pressure chamber.

  • PDF

Optimization of Hot-Water Extraction Condition of Garlic Using a Response Surface Methodology (반응표면분석법을 이용한 마늘 열수추출조건의 최적화)

  • Lee, Jin-Man;Cha, Tae-Yang;Kim, Seong-Ho;Kwon, Taeg-Kyu;Kwon, Joong-Ho;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.385-393
    • /
    • 2007
  • Much research is conducted on the biological activities of medicinal herbs, traditional plants, and agricultural products, cultivated in Korea. This study focused on optimization of hot-water extraction methods for such products, by analyzing and monitoring extraction characteristics using a response surface methodology. We found that the total phenolics contents, electron-donating abilities, and nitrite-scavenging abilities of extracts were significantly affected both by the solvent used for extraction, and by the nature of the particular herb or plant under study. The extraction efficiencies of valuable ingredients such as alliin, allicin, and total thiosulfinate, were greatly affected by extraction temperature, but not by extraction time or the solvent used. We elicited a regression formula for each variable. We first entered the optimal values of all extraction conditions giving active ingredients into the model. Next, we entered the optimal values of all extraction conditions favoring the retention of valuable antioxidant characteristics. Finally, we entered processing factors into the model. Overall, the optimal extraction was at $80^{\circ}C$ for 3.5 hr with 8.5 ml of solvent/g of sample. The predicted values of each variable were similar to the actual values.

Characteristics of Carbozymethylated Substrates from Delignified Autohydrolyzed Substrates (탈리그닌한 자기가수분해 시료로부터 준비한 카복시메틸화 시료의 특성)

  • Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.28-34
    • /
    • 2004
  • This study was performed to evaluate the characteristics of the carboxymethylated substrate from high reactive autohydrolyzed cellulose (HRC) and those of commercial α-cellulose (CAC) and refiner mechanical pulp (RMP). Saccharification rates of HRC substrate were achieved over 70% with 12 hr hydrolysis, about 90% with 24 hr, and 99.5% with 72 hr. CMCase and avicelase activities of cellulase onozuka were 4.09 ㎛ G/mg·min and 14.0 ㎛ G/mg·min, respectively. There were no any significant changes in cellulase activities with this substrate. The saccharification rates of CAC and RMP were very low, 57% and 38% with 72 hr, respectively. Those lignin-zero autohydrolyzed substrates, HRC and CAC, were highly carboxymethylated at the high alkali concentration, near 30%, for 3 hr. reaction, and resulted in 1.13-1.15 of D.S., besides 0.85 of D.S. from RMP. Water solubilities of carboxymethylated substrates were increased with an increase of D.S., 98-98.5% from HRC and CAC and 31.5% from RMP. RMP which has low specific surface area showed lower water retention values, compared to high values of 435 and 321% from CAC and HRC, respectively. There were no direct relationship between surface area and swelling ratio of the substrates.

Quality Characteristics of Low-Fat Plant Oil Emulsion Pork Patties (식물성유 유화물로 대체한 저지방 돈육 패티의 품질 특성)

  • Choi, Young-Joon;Lee, Si-Hyung;Lee, Kyoung-Sook;Choi, Gang-Won;Lee, Kyung-Soo;Jung, In-Chul;Shim, Dong-Wook
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1351-1357
    • /
    • 2019
  • This study investigated the effect of plant oil emulsion as a replacement for animal fat on the quality characteristics of low-fat pork patties. Pork patties were manufactured using a pork fat control (CON) and olive (OPP), soybean (SPP), and canola (CPP) oil emulsions. Replacing animal fat with the plant oil emulsions increased the moisture content and decreased the fat content of the patties as compared to those with pork fat. The water holding capacity and cooking yield, and the moisture and fat retention of the patties were significantly increased, and the diameter reduction and shrinkage ratio decreased with the plant oil replacements. The color parameters of the samples were affected by the addition of the plant oil emulsions, and higher L* and a* values were observed in CON. The b* value of the raw pork patty was highest in OPP, and palmitic acid was the most abundant saturated fatty acid. In terms of unsaturated fatty acids, oleic acid was highest in CON, OPP, and CPP, and linoleic acid was highest in SPP. Hardness, cohesion, and chewiness were no different among the samples, although higher springiness was observed in the pork patties with added plant oil emulsions. The taste, flavor, and palatability of the OPP and CPP patties were higher than in the CON and SPP groups. Fat replacement with plant oil emulsion therefore had a positive effect on the quality characteristics of the pork patties, and due to reduced saturated fatty acids, the end-product provides the healthy low-fat option desired by consumers.