• Title/Summary/Keyword: Water retaining structures

Search Result 32, Processing Time 0.021 seconds

Probabilistic Assessment of Seepage Stability of Soil Foundation under Water Retaining Structures by Fragility Curves (취약도 곡선에 의한 수리구조물 하부 지반의 확률론적 침투 안정성 평가)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.41-54
    • /
    • 2021
  • In this study, probabilistic steady seepage behavior of soil foundation beneath water retaining structures according to the location of cutoffs was studied. A Monte Carlo Simulation based on the random finite element method that considers the uncertainty and spatial variability of soil permeability was performed to evaluate the probabilistic seepage behavior. Fragility curves were developed by calculating the failure probability conditional on the occurrence of a given water level from the probability distribution obtained from Monte Carlo simulations. The fragility curve was prepared for the flow quantities such as flow rate through foundation soil, uplift force on the base of structure, and exit gradient in downstream to examine the reliability of the water retaining structure and the foundation soil. From the fragility curves, the effect of the location of cutoff wall on the reliability of water retaining structure and foundation soil according to the rise in water level was studied.

Case Studies on Ground Improvement by High Pressure Jet Grouting(II) Effect on the Ground Reinforcement and Cut off of Ground Water Behind Temporary Retaining Walls (고압분사주입공법에 의한 지반개량사례연구(II) -흙막이벽 배면지반보강 및 차수효과)

  • Yun, Jung-Man;Hong, Won-Pyo;Jeong, Hyeong-Yong
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.5-16
    • /
    • 1996
  • When braced excavation with temporary retaining wall installation, is performed in loose sand with high ground water level boiling may be induced and considerable damage on the excavation works and structures in the vicinity can take place. Recently, for the purpose of reinforcement of ground and cut-off of ground water behind the temporary retaining wall, high pressure jet grouting is widely used. The purpose of this paper is to investigate the effects of jet grouting on ground reinforcement and cut -off of the ground water behind temporary retaining walls for braced excavation. A series of both laboratory and field tests has been performed. The test results show that high pressure jet grouting has sufficient effects on reinforcement of stiffness of ground and retaining wall. The permeability of the improved ground was 10-f_ 10-3cm l s smaller than those of the original ground. Therefore, the effect on cut off of ground water behind temporary retaining walls could be improved by high pressure jet grouting method.

  • PDF

Seismic performance evaluation of agricultural reservoir embankment based on overtopping prevention structures installation

  • Bo Ra Yun;Jung Hyun Ryu;Ji Sang Han;Dal Won Lee
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.469-484
    • /
    • 2023
  • In this study, three types of structures-stepped gabion retaining walls, vertical gabion retaining walls, and parapets-were installed on the dam floor crest to prevent the overflow of deteriorative homogeneous reservoirs. The acceleration response, displacement behavior, and pore water pressure ratio behavior were compared and evaluated using shaking-table model tests. The experimental conditions were set to 0.154 g in consideration of the domestic standard and the seismic acceleration range according to the magnitude of the earthquake, and the input waveform was applied with Pohang, Gongen, and artificial earthquake waves. The acceleration response according to the design ground acceleration increased as the height of the embankment increased, and the observed value were larger in the range of 1.1 to 2.1 times the input acceleration for all structures. The horizontal and vertical displacements exhibited maximum values on the upstream slope, and the embankment was evaluated as stable and included within the allowable range for all waveforms. The settlement ratio considering the similarity law exhibited the least change in the case of the parapet structure. The amplification ratio was 1.1 to 1.5 times in all structures, with the largest observed in the dam crest. The maximum excess pore water pressure ratio was in the range of 0.010 - 0.021, and the liquefaction evaluation standard was within 1.0, which was considered very stable.

Coefficient charts for active earth pressures under combined loadings

  • Zheng, De-Feng;Nian, Ting-Kai;Liu, Bo;Yin, Ping;Song, Lei
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.461-476
    • /
    • 2015
  • Rankine's theory of earth pressure cannot be directly employed to c-${\phi}$ soils backfill with a sloping ground subjected to complex loadings. In this paper, an analytical solution for active earth pressures on retaining structures of cohesive backfill with an inclined surface subjected to surcharge, pore water pressure and seismic loadings, are derived on the basis of the lower-bound theorem of limit analysis combined with Rankine's earth pressure theory and the Mohr-Coulomb yield criterion. The generalized active earth pressure coefficients (dimensionless total active thrusts) are presented for use in comprehensive design charts which eliminate the need for tedious and cumbersome graphical diagram process. Charts are developed for rigid earth retaining structures under complex environmental loadings such as the surcharge, pore water pressure and seismic inertia force. An example is presented to illustrate the practical application for the proposed coefficient charts.

Displacement Comparison of a Braced Retaining Wall by Elasto-Plastic Analysis Program (탄소성 해석프로그램에 의한 버팀지지 흙막이벽의 변위 비교)

  • 신방웅;김상수;오세욱;김동신
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.395-402
    • /
    • 2000
  • Recently, the deep excavations have been peformed to utilize the under ground space. As the ground excavation is deeper, the damage of the adjacent structure and the ground occurs frequently. The analysis of the retaining structures is necessary to the safety of the excavation works. There are many methods such as elasto-plastic, FEM, and FDM to analyze the displacement of the retaining structure. The elasto-plastic method is generally used in practice. In this thesis, GEBA-1 program by the Nakamura-Nakajawa elasto-plastic method was developed. The program for Windows was used the Visual Basic 6.0, and the Main of the program consists of three subroutines, SUB1, SUB2, and SUB3. The lateral displacement of the wall was analyzed by the developed program GEBA-1, SUNEX, and EXCAD, and compared with the measured displacement by the Inclinometer(at three excavation work sites). The excavation method of each site is braced retaining wall using H-pile. Each excavation depth is 14m, 14m, or 8.2m. The results of the analyses are the followings ① In the multi-layer soil, the lateral displacement by the GEBA-1 and EXCAD which is considering the distribution of the strut load is equal to the measured displacement. Elasto-plasto programs can't consider the change of the ground water in clay. Therefore, the analysis displacement was expected only 20% of the measured wall displacement. ③ At the final excavation step, the maximum lateral displacement of analysis and field occurred 7∼18m at the 85∼92% of the excavation depth. ④ The maximum lateral displacement in clay, as 50mm, occurred on the ground surface.

  • PDF

Analysis of the Impact on Prediction Models Based on Data Scaling and Data Splitting Methods - For Retaining Walls with Ground Anchors Installed (데이터 스케일링과 분할 방식에 따른 예측모델의 영향 분석 - 그라운드 앵커가 설치된 흙막이 벽체 대상)

  • Jun Woo Shin;Heui Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.639-655
    • /
    • 2023
  • Recently, there has been a growing demand for underground space, leading to the utilization of earth retaining walls for deep excavations. Earth retaining walls are structures that are susceptible to displacement, and their measurement and management are carried out in accordance with the standards established by the Ministry of Land, Infrastructure, and Transport. However, managing displacement through measurement can be considered similar to post-processing. Therefore, in this study, we not only predicted the horizontal displacement of a retaining wall with ground anchors installed using machine learning, but also analyzed the impact of the prediction model based on data scaling and data splitting methods while learning measurement data using machine learning. Custom splitting was the most suitable method for learning and outputting measurement data. Data scaling demonstrated excellent performance, with an error within 1 and an R-squared value of 0.77 when the anchor tensile force and water pressure were standardized. Additionally, it predicted a negative displacement compared to a model that without scaling.

A Simple Method for Predicting Lateral Earth Pressure in Consideration of Construction Speed of Embankment (성토 재하속도를 고려한 측방토압의 간이예측법)

  • Im, Eun-Sang;Kim, Hyoung-Soo;Kim, Tae-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1055-1060
    • /
    • 2005
  • In evaluating the stability of underground structures and designing prevention methods against the lateral flow, it is necessary to predict the amount and the distribution of the lateral earth pressure acting on these retaining structures. However, because the lateral deformation of real ground is a very complex phenomenon influenced by interaction between volumetric deformation bringing an increase of stability of ground and shear deformation causing failure of ground, any appropriate methods for estimating the lateral earth pressure in consideration of the geotechnical properties of ground and the construction conditions in embankment have not been developed as yet. Therefore, a prediction method, which considers effects of a construction speed of embankment, using the Boussinesq's solution based on the elasticity theory without using complex numerical analyses such as finite element analyses is proposed in this research.

  • PDF

Bioinspired Nanoengineering of Multifunctional Superhydrophobic Surfaces

  • Choi, Chang-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.102-133
    • /
    • 2015
  • Nature, such as plants, insects, and marine animals, uses micro/nano-textured surfaces in their components (e.g., leaves, wings, eyes, legs, and skins) for multiple purposes, such as water-repellency, anti-adhesiveness, and self-cleanness. Such multifunctional surface properties are attributed to three-dimensional surface structures with modulated surface wettability. Especially, hydrophobic surface structures create a composite interface with liquid by retaining air between the structures, minimizing the contact area with liquid. Such non-wetting surface property, so-called superhydrophobicity, can offer numerous application potentials, such as hydrodynamic drag reduction, anti-biofouling, anti-corrosion, anti-fogging, anti-frosting, and anti-icing. Over the last couple of decades, we have witnessed a significant advancement in the understanding of surface superhydrophobicity as well as the design, fabrication, and applications of superhydrophobic coatings/surfaces/materials. In this talk, the designs, fabrications, and applications of superhydrophobic surfaces for multifunctionalities will be presented, including hydrodynamic friction reduction, anti-biofouling, anti-corrosion, and anti-icing.

  • PDF

Inflence of nearby structures in braced excavation (버팀굴착에서 인접 구조물의 영향평가)

  • 유일형;김형탁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.139-148
    • /
    • 1994
  • Rapid industrialization and urbanization caused by the high economic growth of the country requires optimization of land usage as well as the expansion of underground space. Therefore the construction of large and deep basements is inevitable in built up areas where the braced excavation for earth retaining structures may create many problems such as settlement and damages of nearby buildings and underground utilities. In this work, some of major influential factors concerning the stability of braced excavation are investigated and the results are compared with the field observation results. The ground water table, applied strut forces, horezontal wall displacement, infilling materials in the rock joints were found to be the most critical factors influencing the stability of braced walls constructed in the layered ground. Magnituide and type of the wall deformation was closely related to the pattern of the surface settlement. The stability of braced walls are described in terms of strut forces.

  • PDF

Efficient Optimum Design of Reinforced Concrete Structures using the Mixed-Discrete Optimization Method

  • Kim, Jong-Ok
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.32-43
    • /
    • 1997
  • Abstract A series of permeability tests was performed on the mixtures with specific mixing rates of sand and bentonite using modified rigid-wall permeameter. Sand-bentonite mixtures were permeated by organics, ethanol and TCE. Permeability of bentonite with several mixing rates had a tendency to decrease up to initial one pore volume and permeability was thereafter converged to a constant value. When sand-bentonite mixtures was permeated by water, permeability was decreased at the beginning but it was thereafter converged to a constant. Among several mixing rates, permeability was greatly decreased at 15% of mixing rate. When sand-bentonite mixtures with 15% mixing rate was permeated by ethanol, permeability was about 10 times larger value than permeability of water. Peameability was shown greater values when permeated by TCE (TrichloroEthylene) followed by ethanol. Suitable mixing rate of sand-bentonite for a liner of waste landfills was detected.