• 제목/요약/키워드: Water resource protection

검색결과 66건 처리시간 0.023초

슬래그 모래특성에 따른 모르터의 강도에 관한 연구 (A Study on Mortar Strength as Slag Sand Characteristics)

  • 박정우;백민수;김성식;임남기;정재동;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.383-388
    • /
    • 2000
  • In these days, there are out of natural sands in the construction field. It is required that development of substitute material for natural material. The blast-furnace slag could be a good alternative material in this situation. It can help resource recycling and the protection of environment. This study presents that the strength properties of mortar using air-cooled blast-furnace slag sand and water-cooled blast-furnace slag sand. The mixing design of this study have a few factors, three type of unit water, four types of W/C, five types of substitution rate. When air-cooled furnace slag sand used in mortar, as substitution rate is higher, 3, 7-days compression strength and flexural strength are going up. But, in case of water-cooled furnace slag sand mortar, strengths are going down.

  • PDF

도시유역 CSOs 처리를 위한 저류형시스템 설계용량 산정 (Estimation of Storage Capacity for CSOs Storage System in Urban Area)

  • 조덕준;이정호;김명수;김중훈;박무종
    • 한국물환경학회지
    • /
    • 제23권4호
    • /
    • pp.490-497
    • /
    • 2007
  • A Combined sewer overflows (CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available (which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a continuous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban drainage system used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range $3{\times}DWF$ (dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a decision of storage volume for CSOs reduction and water quality protection.

개발도상국 중국의 하수처리장 운영.관리능 평가 (O&M Evaluating for Sewage Treatment Plants in China as a Developing Country)

  • 김연권;문용택;김홍석;김지연
    • 환경위생공학
    • /
    • 제21권3호
    • /
    • pp.27-36
    • /
    • 2006
  • For the last 20 years, China has transformed itself from a rural economy into an industrial giant, averaging over 8 % annual growth of GDP. Unfortunately, this rapid growth has taken a significant toll on its natural resource base as well, particularly water resources. These problems have been exacerbated by a low level of sewage treatment technology and by the operating and maintenance (O&M). In case of urban areas, most big cities in China have a well functioning sewage system comprised of sewers and sewage treatment plants (STPs). Nevertheless, the existing STPs are still not capable of properly treating the sewage, both quantitatively and qualitatively. The rural areas in China cover a large land, with two-third of the nation's population. The low educational and poor economic states make it hard to process self-protection and management. In the surveyed area in Henan, there was no STPs put into use as of 2004, and the sewer lines are not well organized. The big issue for the currently planned STPs is the collection system not included in the plans.

Factors controlling groundwater chemistry of the Triassic Sandstone aquifer in North Yorkshire UK

  • Yoshida K.;Bottrell S.H.;West L.J.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.29-38
    • /
    • 2005
  • It is important to understand groundwater conditions such as recharge, flow and hydrochemical process occurred within an aquifer for groundwater protection and groundwater resource management. Groundwater from the Triassic Sherwood Sandstone aquifer of North Yorkshire has been used for industrial purposes and domestic water supply. Tn order to understand the processes affecting groundwater chemistry and identify the sources of high chloride, sulphate and nitrate concentrations hydrochemical and isotopic measurements were carried out. Hydrochemical and isotopic measurements indicated that five groundwater types exist within the Sherwood Sandstone aquifer of study area. The results of hydrochemical and isotopic measurements showed that older groundwaters have different hydrochemical and isotopic characteristics from recent recharge water. It was also found that water-rock interactions are the dominant mechanism controlling the ${\delta}^{13}C$ composition of dissolved inorganic carbon, the ${\delta}^{34}S\;and\;{\delta}^{18}O$ composition of dissolved sulphate and the strontium isotope ratios ($^{87}Sr/^{86}Sr$) in recent recharge water and old groundwater. Several abstraction boreholes within the Selby wellfield have been contaminated by saline water. The isotopic data of saline groundwater samples taken from these abstraction boreholes indicate that saline waters are derived from the dissolution of the Triassic evaporites within the Mercia Mudstone.

  • PDF

표토유실 보전을 통한 온실가스배출 저감과 수자원 보전 기능의 산출 및 정책제안 (Estimating of the Greenhouse Gas Mitigation and Function of Water Resources Conservation through Conservation of Surface Soils Erosion and Policy Suggestion)

  • 오승민;김혁수;이상필;이종건;정석순;임경재;김성철;박윤식;이기하;황상일;양재의
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권6호
    • /
    • pp.74-84
    • /
    • 2017
  • Soil erosion is often extreme in Korea due to high rainfall intensities and steep slopes, and climate change has also increased the risk of erosion. Despite its significane, erosion-induced soil organic carbon (SOC) emission and water resource loss are not well understood, along with the lack of an integrated surface soil erosion protection policy. Therefore, to design adequate protection policies, land users, scientists, engineers and decision makers need proper information about surface soil and watershed properties related to greenhouse gas emission potential and water conservation capability, respectively. Assuming the total soil erosion of $346Tg\;yr^{-1}$, soil organic matter (SOM) content of 2% (58% of SOM is SOC), and mineralization rate of 20% of the displaced carbon, erosion-induced carbon emission could reach $800Gg\;C\;yr^{-1}$. Also the available water capacity of the soil was estimated to be 15.8 billion tons, which was 14 times higher than the yearly water supply demand in Seoul, Korea. Therefore, in order to prevent of soil erosion, this study proposes a three-stage plan for surface soil erosion prevention: 1) classification of soil erosion risk and scoring of surface soil quality, 2) selection of priority areas for conservation and best management practices (BMP), and 3) application of BMP and post management.

Vulnerability AssessmentunderClimateChange and National Water Management Strategy

  • Koontanakulvong, Sucharit;Suthinon, Pongsak
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.204-204
    • /
    • 2016
  • Thailand had set the National Water Management Strategy which covered main six areas in the next 12 years, i.e., by priority: (1) water for household, (2) water for agricultural and industrial production, (3) water for flood and drought management, (4) water for quality issue, (5) water from forest conservation and soil erosion protection, (6) water resources management. However due to the climate change impact, there is a question for all strategies is whether to complete this mission under future climate change. If the impact affects our target, we have to clarify how to mitigate or to adapt with it. Vulnerability assessment was conducted under the framework of ADB's (with the parameters of exposure, sensitivity and adaptive capacity) and the assessments were classified into groups due to their different characteristic and the framework of the National Water Management Strategy, i.e., water supply (rural and urban), water for development (agriculture and others), water disasters (floods (flash, overflow), drought, water quality). The assessments identified the parameters concerned and weight factors used for each groups via expert group discussions and by using GIS mapping technology, the vulnerability maps were produced. The maps were verified with present water situation data (floods, drought, water quality). From the analysis result of this water resources management strategy, we found that 30% of all projects face the big impacts, 40% with low impact, and 30% for no impact. It is clear that water-related agencies have to carefully take care approximately 70% of future projects to meet water resources management strategy. It is recommended that additional issues should be addressed to mitigate the impact from climate risk on water resource management of the country, i.e., water resources management under new risk based on development scenarios, relationship with area-based problems, priority definition by viewpoints of risk, vulnerability (impact and occurrence probability in past and future), water management system in emergency case and water reserve system, use of information, knowledge and technology in management, network cooperation and exchange of experiences, knowledge, technique for sustainable development with mitigation and adaptation, education and communication systems in risk, new impact, and emergency-reserve system. These issues will be described and discussed.

  • PDF

DEVELOPMENT OF A VALLEY MANAGEMENT SYSTEM FOR GIS AND REMOTE SENSING EDUCATION

  • Wu, Mu-Lin;Wong, Deng-Ching;Wang, Yu-Ming
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.570-573
    • /
    • 2006
  • College GIS and remote sensing education usually consists of commercial software packages implementations in the classroom. Computer programming is quite important when college graduates work in private or public sectors relevant with GIS and remote sensing implementations. The objective of this paper was to develop a valley management system which implements GIS and remote sensing as the key components for education. The Valley Authority is entitled with water resource protection for sustainable drinking water supply of the second largest city in Taiwan. The test area consists of three different government agencies, Forest Service, EPA, and Water Resource Agency. Materials were provided by the Valley Authority in ArcGIS file format. MapObjects have made the GIS development process much easier. Remote sensing with image manipulation functions were provided by computer programming with Visual Baisc.NET and Visual C#.NET. Attributes inquiry are performed by these two computer languages as well. ArcGIS and ArcPad are also used for simple GIS manipulations of the test area. Comparison between DIY and commercial GIS can be made by college students. Functions provided by the developed valley management system depending on how many map layers have been used and what types of MapObjects components have been used. Computer programming experience is not essential but can be helpful for a college student. The whole process is a step-by-step sequence which college students can modify to depict their capability in GIS and remote sensing. The development process has gone through one semester, three hours every week in 18 weeks. College students enrolled in this class entitled with GIS showed remarkable progresses both in GIS and remote sensing.

  • PDF

국가 보호지역 통합 시스템의 양적 확대 목표에 대한 평가 (Evaluating Quantitative Expansion Goals of the National Protected Areas Integrated System)

  • 홍진표
    • 한국환경복원기술학회지
    • /
    • 제21권3호
    • /
    • pp.57-65
    • /
    • 2018
  • The study is conducted to establish the National Protected Areas Integrated System(NPAIS) which includes National Protected Areas(NPAs) and other conservation measures in terms of effective ways for biodiversity conservation. Additionally, it is carried out to evaluate progress toward quantitative expansion goals in Aichi biodiversity Target 11. The NPAIS consists of NPAs and other effective area-based conservation measures(OECMs). There are two different types of OECMs. OECMs type I, including water-source protection Areas(WPA), riparian zones(RZ), fishery-resource protection zones (FPZ), and urban natural park zones(UNPZ), is a potential protected area which is recommended to be incorporated into the NPAs for effective management. OECMs type II means development restriction zones(DRZ), natural recreation forests(NRF), and buffer zones for Korea national arboretum(BKNA). As a result of evaluating the quantitative expansion goals of the NPAIS, terrestrial and inland water protected areas exceed 17% of the quantitative goal in Aichi biodiversity Target 11. The larger the area of individual OECMs and the lower the degree of overlap with NPAs, the higher the contribution of them to the terrestrial and inland water protected areas. DRZ contributes to enlarge more than 3% of quantitative expansion. And RZ and NRF contribute more than 1%. The marine protected areas are expanded by $1,425km^2$ through FPZ, but the expanded area is very small as comparing with the total marine area. It adds only 0.321% to the quantitative expansion. The rest of OECMs also has very poor quantitative expansion contributions in the marine area. Consequently, the NPAIS is effective for quantitative expansion of land areas, but not for marine areas.

펄스 레이저 기반 담수용 미세 플라스틱 실시간 센서 모니터링 시스템 연구 (Study on Real Time Sensor Monitoring Systems Based on Pulsed Laser for Microplastic Detection in Tap Water)

  • 한승헌;김대근;정행윤;김선훈
    • 센서학회지
    • /
    • 제28권5호
    • /
    • pp.294-298
    • /
    • 2019
  • Pulsed laser-based optical sensor monitoring systems for real time microplastic particle counting are proposed and developed in this study. To develop our real time monitoring system, we used a 450 nm pulsed laser and a photomultiplier with very high quantum efficiency. First, we demonstrated that the microplastic particle counting system could detect standard micro bead samples of 100, 250, and $500{\mu}m$ in river water. We then performed research concerning pulsed laser-based optical spectral sensor systems for real time microplastic monitoring. Additionally, we demonstrated that the real time microplastic remote monitoring system using LoRa communications could detect microplastic in the tap water resource protection area.

Modeling time-dependent behavior of hard sandstone using the DEM method

  • Guo, Wen-Bin;Hu, Bo;Cheng, Jian-Long;Wang, Bei-Fang
    • Geomechanics and Engineering
    • /
    • 제20권6호
    • /
    • pp.517-525
    • /
    • 2020
  • The long-term stability of rock engineering is significantly affected by the time-dependent deformation behavior of rock, which is an important mechanical property of rock for engineering design. Although the hard rocks show small creep deformation, it cannot be ignored under high-stress condition during deep excavation. The inner mechanism of creep is complicated, therefore, it is necessary to investigate the relationship between microscopic creep mechanism and the macro creep behavior of rock. Microscopic numerical modeling of sandstone creep was performed in the investigation. A numerical sandstone sample was generated and Parallel Bond contact and Burger's contact model were assigned to the contacts between particles in DEM simulation. Sensitivity analysis of the microscopic creep parameters was conducted to explore how microscopic parameters affect the macroscopic creep deformation. The results show that the microscopic creep parameters have linear correlations with the corresponding macroscopic creep parameters, whereas the friction coefficient shows power function with peak strength and Young's modulus, respectively. Moreover, the microscopic parameters were calibrated. The creep modeling curve is in good agreement with the verification test result. Finally, the creep curves under one-step loading and multi-step loading were compared. This investigation can act as a helpful reference for modeling rock creep behavior from a microscopic mechanism perspective.