• Title/Summary/Keyword: Water resistance properties

Search Result 961, Processing Time 0.035 seconds

Foam Application for Water and Oil Repellent Finishes (거품을 이용한 발수 발유가공)

  • 이정민;배기서;노덕길;김병미;이성애
    • Textile Coloration and Finishing
    • /
    • v.5 no.2
    • /
    • pp.125-133
    • /
    • 1993
  • This study was to investigate the application of foam finishing technology (FFT) for the silicone finishing of cotton fabrics and the tluorochemical finishing of polyester fabrics. The repellency properties, soil resistance properties and selected physical properties were demonstrated and compared the foam finishing with the conventional padding application. Amino-funetional silicone prorided better durability than epoxy-functional silicone and conventional reactive silicone after three launderings. Foam finishing fabrics improved stiffness but showed lower or equivalent water and oil repellency properties, soil resistance properties, tearing strength and abrasion resistance than those of the fabrics treated by conventional padding process. But, it was evident that the foam application of silicone and fluorochemical finishes to the fabrics were feasible.

  • PDF

Enhancement of the Water-resistance and Physical Properties of Sodium Alginate Film

  • Kim, Eun-Jung;Kim, Byung-Yong;Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.108-111
    • /
    • 2005
  • To improve water-resistance and physical properties of sodium alginate film, effects of sodium alginate and plasticizer concentrations, divalent cation types and concentrations, and immersion time of films into divalent cation solutions on sodium alginate films were evaluated, based on elongation strength (ES), elongation rate (E), water vapor permeability (WVP), and water solubility (WS). Film made from 1.5% sodium alginate solution (w/w) had low WVP and WS, which are optimal characteristics for application of film preparation. Addition of plasticizer increased E and WS. Less than 2% $CaCl_2$ addition and 15min immersion time reduced WVP, WS, and E significantly (p<0.05). Sodium alginate films treated with $CuCl_2$, and $ZnCl_2$ solutions had lower WVP and WS, whereas $MgCl_2$ had no influence on improving water resistance of films.

Study on Characteristics of Liner and Cover Material in Waste Landfill using VAE Resin (VAE 수지를 활용한 폐기물 매립지의 차수재 특성 연구)

  • Lee, Seung-Jae;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.28 no.5
    • /
    • pp.503-509
    • /
    • 2019
  • To prevent environmental pollution caused by leakage of leachate from waste landfill, vinyl acetate-ethylene (VAE) resin is applied to liner and cover materials to improve their performance. Styrene, styrene butadiene rubber, and VAE are widely used as polymer resins that have excellent water resistance and durability. Further, VAE resin is known to have additional advantages such as adhesion to nonpolar materials and resistance to saponification as a copolymer. In this study, the effect of VAE content on the properties of liner and cover materials was studied. The water and air content ratios, bending and compressive strengths, water absorption ratio, and coefficient of permeability of these materials were measured. The liner and cover materials with 4 wt% VAE showed good properties.

Statistical variations in the impact resistance and mechanical properties of polypropylene fiber reinforced self-compacting concrete

  • Mastali, M.;Dalvand, A.;Fakharifar, M.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.113-137
    • /
    • 2016
  • Extensive experimental studies on remarkable mechanical properties Polypropylene Fibre Reinforced Self-compacting Concrete (PFRSCC) have been executed, including different fibre volume fractions of Polypropylene fibers (0.25%, 0.5%, 0.75%, and 1%) and different water to cement ratios (0.21, 0.34, 0.38, and 0.41). The experimental program was carried out by using two hundred and sixteen specimens to obtain the impact resistance and mechanical properties of PFRSCC materials, considering compressive strength, splitting tensile strength, and flexural strength. Statistical and analytical studies have been mainly focused on experimental data to correlate of mechanical properties of PFRSCC materials. Statistical results revealed that compressive, splitting tensile, and flexural strengths as well as impact resistance follow the normal distribution. Moreover, to correlate mechanical properties based on acquired test results, linear and nonlinear equations were developed among mechanical properties and impact resistance of PFRSCC materials.

Characteristics of Polyaniline Anti-Corrosive Coatings with Primer and Top Coating Resins (하도 및 상도 수지에 따른 폴리아닐린 방청도료의 특성)

  • Kim, Tae-Ok;Kong, Seung-Dae;Park, Jin-U
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.399-409
    • /
    • 2007
  • Characteristics of polyaniline anti-corrosive coatings with various primer coating resins(epoxy resin, urethane resin, and others) and top coating resins(epoxy and acrylic urethane resins) were investigated through adhesion, acid resistance, alkaline resistance, water resistance, and anti-corrosion tests. As a result, the anti-corrosive properties of the prepared coatings using polyaniline varied with the types of primer and top coating resins. In this condition, the properties of adhesion, chemical resistance, and water resistance were found to be very satisfactory when using emeraldine base (EB) of polyaniline blended with single-packaged urethane and acrylic urethane resins as the primer coatings, and using acrylic urethane resin as the top coatings. Also, the anti-corrosive function of these anti-corrosive coatings was well preserved for 1000 hr in the salt spray experiment.

A Study on the Freezing and Strength Properties of Cement Mortar using Accelerator for Freezing Resistance (내한촉진제를 이용한 시멘트 모르터의 동결 및 강도특성에 관한 연구)

  • 박상준;김동석;원철;이상수;김영진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1267-1272
    • /
    • 2000
  • When fresh concrete is exposed to low temperature, the concrete may suffer frost damage due to freezing at early ages and strength development may be delayed. These are problems on cold weather concrete. One of the solution methods for resolving these problems has been to reduce the freezing temperature of concrete by the use of chemical admixtures called Accelerators for freezing resistance. Therefore, in this study, we executed freezing temperature of mortar, setting and strength properties with using water reducing accelerator and accelerators for freezing resistance which are producted internationally. As a result of this experiment, the freezing temperature of mortar is lower and the setting property is promoted when the admixing content of accelerators for freezing resistance is increased. Moreover, the compressive strength of mortar used accelerators for freezing resistance represented the result which is similar with result of analysis of compressive strength increase with using logistic curve formula, but in the case of plain and using water reducing accelerator, there is no relation between logistic curve formula, maturity and compressive strength.

Effect of fly ash and plastic waste on mechanical and durability properties of concrete

  • Paliwal, Gopal;Maru, Savita
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.575-586
    • /
    • 2017
  • The disposal of polythene waste and fly ash is causing serious threat to the environment. Aim of this study is to decrease environmental pollution by using polythene waste and fly ash in concrete. In this study, cement was partially replaced with 0%, 5%, 10%, 15% and 20% fly ash (by weight) and plastic waste was added in shredded form at 0.6% by weight of concrete. The specimens were prepared for the concrete mix of M25 grade and water to cementitious material ratio (w/c) was maintained as 0.45. Fresh concrete property like workability was examined during casting the specimens. Hardened properties were found out by carrying out the experimental work on cubes, cylinders and beams which were cast in laboratory and their behavior under test were observed at 7 & 28 days for compressive strength and at 28 days for density, flexural strength, dynamic modulus of elasticity, abrasion resistance, water permeability and impact resistance. Overall results of this study show that addition of 0.6% (by weight of the concrete) plastic waste with 10% (by weight of cement) replacement of cement by fly ash result an improvement in properties of the concrete than conventional mix.

Changes in the Process Efficiency and Product Properties of Pulp Mold by the Application of Oil Palm EFB (오일팜 EFB 섬유 적용에 따른 펄프몰드 공정효율 및 제품품질 변화)

  • Kim, Dong-Seop;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • The demand of environmental friendly packaging materials such as pulp mold has been increased. The application of the oil palm biomass, EFB (Empty Fruit Bunch) fiber as natural raw materials to the pulp mold could increase the usability of the pulp mold by the reduced production cost brought from the relatively low cost of EFB. The effects of the EFB(Empty Fruit Bunch) fibers on the properties of pulp mold and on the process efficiency were evaluated in this study. The pulp mold samples were prepared with mixture ONP (Old news paper) and EFB by using laboratory wet pulp molder. The changes in the drying efficiency were measured with the changes in the solid contents of pulp mold samples during drying process. The efficiency of the surface coating treatment on the pulp mold depending on the condition of the pulp mold samples were also evaluated in order to improve the water resistance properties of pulp mold. The addition of EFB increased the drying efficiency by providing the bulkier structure and the higher water contact angle, which indicated the better water resistance properties. The water resistance were improved by the surface coating treatments and the application of surface coating on the pulp mold at the higher moisture contents resulted in the higher improvement in the water resistance. The bulkier structure originated from the application of EFB fiber reduced the effects of the surface coating, which could be overcome by the control of surface coating process.

Effects of phosphate coating on some performance of painted Al alloy sheet (도장 알루미늄 합금판의 성능에 미치는 인산염피막의 영향)

  • 이규환;노병호
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.5
    • /
    • pp.289-299
    • /
    • 1995
  • The effects of phosphate coating have been studied on physical properties and corrosion resistance of painted aluminum alloy sheet for automobile body. The physical properties (surface roughness, paint adhesion, impact resistance and pencil hardness) and corrosion resistance(cyclic corrosion and filiform corrosion) were investigated. Phosphate coatings enhanced the physical properties of painted Al alloy sheet, especially paint adhesion after the 240hours water immersion test. Phosphate coating also markedly improved the resistance for cyclic corrosion and filiform corrosion of painted cold rolled steel and Zn-Ni plated steel sheet as well as painted Al alloy sheet. The corrosion resistance of painted Al sheets was varied with the concentration of free fluoride ion and metal additives like Ni and Mn in the phosphating bath. A maximum corrosion resistance was obtained at about 300ppm of fluoride ion and additives of Ni and Mn obviously increased the corrosion resistance of painted specimens.

  • PDF

Comparisons of Thermal-moisture Properties in Combination of 3D spacer and Polyurethane(PU) Foam for Mold Brassiere Cups (몰드 브래지어 컵의 제작을 위한 3D 스페이서 패브릭과 폴리우레탄(PU) 폼 조합에 따른 열·수분 전달 특성 비교)

  • Lee, Hyun Young;Park, Huiju
    • Korean Journal of Human Ecology
    • /
    • v.24 no.2
    • /
    • pp.285-295
    • /
    • 2015
  • To identify optimized thermal properties of mold brassiere cup for improved thermal comfort during summer, we compared the thermal resistance and the water vapor permeability of Polyurethane (PU) foam, 3D spacer fabric and the two combined materials of the PU foam and the 3D spacer fabric. Four experimental mold brassieres were made of the materials for wearing test. Six women in their twenties evaluated the wearing sensation in the hot and humid environment. The changes in microclimate temperature and humidity while wearing test brassiere cups were measured. Results indicate that thermal resistance increased as more PU foam were combined, while the water vapor permeability was higher as the content of the 3D spacer fabric increased at thickness of 18mm and over. However, in the wear test, the PU foam brassiere was the most preferred in all ambient conditions due to its soft, flexible and smooth texture, despite its high thermal resistance and low water vapor permeability. This indicates that the textures of mold foams are more dominant properties than thermal properties for mold foams in determining the wear comfort of mold brassieres.