• 제목/요약/키워드: Water reducing performance

Search Result 341, Processing Time 0.027 seconds

Analysis of Operating Characteristics in Tidal Power Generation According to Tide Level

  • Hong, Jeong-Jo;Oh, Young-sun
    • International Journal of Contents
    • /
    • v.18 no.1
    • /
    • pp.76-84
    • /
    • 2022
  • Tidal power generation plays a critical role in reducing greenhouse gas emissions. It uses a tidal force generated by gravitational force between the moon, the earth, and the sun. The change of seawater height generates the tide-generating force, and the magnitude of the change is the tide level. The tide level change has the same period as the tide-generating force twice a day, every 29.5 days, every year, and every 18.6 years. Sihwa Lake Tidal Power Station is Korea's first tidal power plant that began commercial power generation in August 2011 and has been accumulating a large volume of data on electricity production, power generation sales, sluice displacement, and tide levels. The purpose of this paper was to analyze the impact of the inefficiency factors affecting production and the tidal level change on tidal power generation and their characteristics using Sihwa Lake Tidal Power's operational performance data. Throughout this paper we show that tidal power generating operation is accurately predicting the trends of magnitude of tidal force to be periodical for each day. determining the drop to initiate the water turbine generator factoring the constraints on the operation of Sihwa Lake, and reflecting the water discharge through the floodgate and water turbine during the standby mode in the power generation plan to be in the optimal condition until the initiation of the next power generation can maximize power generation.

Comparative analysis of linear model and deep learning algorithm for water usage prediction (물 사용량 예측을 위한 선형 모형과 딥러닝 알고리즘의 비교 분석)

  • Kim, Jongsung;Kim, DongHyun;Wang, Wonjoon;Lee, Haneul;Lee, Myungjin;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1083-1093
    • /
    • 2021
  • It is an essential to predict water usage for establishing an optimal supply operation plan and reducing power consumption. However, the water usage by consumer has a non-linear characteristics due to various factors such as user type, usage pattern, and weather condition. Therefore, in order to predict the water consumption, we proposed the methodology linking various techniques that can consider non-linear characteristics of water use and we called it as KWD framework. Say, K-means (K) cluster analysis was performed to classify similar patterns according to usage of each individual consumer; then Wavelet (W) transform was applied to derive main periodic pattern of the usage by removing noise components; also, Deep (D) learning algorithm was used for trying to do learning of non-linear characteristics of water usage. The performance of a proposed framework or model was analyzed by comparing with the ARMA model, which is a linear time series model. As a result, the proposed model showed the correlation of 92% and ARMA model showed about 39%. Therefore, we had known that the performance of the proposed model was better than a linear time series model and KWD framework could be used for other nonlinear time series which has similar pattern with water usage. Therefore, if the KWD framework is used, it will be possible to accurately predict water usage and establish an optimal supply plan every the various event.

Antioxidative and Anticancer Activities of Various Solvent Fractions from the Leaf of Camellia japonica L. (동백나무 잎 용매분획물의 항산화 및 항암 활성)

  • Kim, Jin-Hee;Jeong, Chang-Ho;Shim, Ki-Hwan
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.267-274
    • /
    • 2010
  • To obtain basic information on the potential use of Camellia japonica leaf as a raw material in functional food, leaf antioxidant and anticancer activities were investigated. The radical-scavenging activity of various solvent fractions from the leaf, as shown by the DPPH radical test, increased in a dose-dependent manner, with the water fraction showing the highest activity. The reducing power of various solvent fractions from the leaf was also dose-dependent, and, again, the water fraction showed the highest reducing power. The water fraction showed strong antioxidant activity in the linoleic acid test and was also capable of scavenging nitrite in a dose-dependent manner. Proportions of 92.15% and 95.61% of available nitrite were scavenged by the water and butanol fractions, respectively, at levels of $1,000{\mu}g/mL$. Both butanol and water fractions exhibited strong inhibitory effects on the growth of human lung and colon cancer cells. The total phenolic contents of the butanol and water fractions were 216.26 mg/g and 220.68 mg/g, respectively. High-performance liquid chromatography (HPLC) showed that quercetin and epicatechin were the predominant phenolic compounds in the water fraction. The activities of this fraction are attributable to the presence of these phenolic compounds, particularly quercetin and epicatechin.

Extinguishing Characteristics of Liquid Pool Eire by Water Mist Containing Sodium Salt (나트륨 염이 첨가된 미분무수의 액체 pool fire소화특성)

  • Park Jae-Man;Shin Chang-Sub
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.13-19
    • /
    • 2005
  • An experimental study is presented for extinguishing characteristics of liquid fuel fire by water mist containing sodium acetate trihydrate. To evaluate the extinguishing performance of water mist containing an additive, the evaporation characteristics of a water droplet on a heated surface was examined. The evaporation process was recorded by a charge-coupled-device camera. Also, small-scale extinguishing tests were conducted for n-heptane pool fire in ventilated space to measure flame temperature variation. The average evaporation rate of a water droplet containing an additive was lower than that of a pure water droplet at a given surface temperature due to the precipitation of salt in the liquid-film and change of surface tension. In case of using an additive, the flame temperature was lower than that of pure water at a given discharge pressure and it was because the momentum of a water droplet containing an additive was increased reducing flame size. And also dissociated metal atoms, sodium, were reacted as a scavenger of the major radical species OH^-,\;H^+$ which were generated for combustion process. Moreover, at a high pressure of 4MPa, the fire was extinguished through blowing effect as well as primary extinguishing mechanisms.

Satellite-based Rainfall for Water Resources Application

  • Supattra, Visessri;Piyatida, Ruangrassamee;Teerawat, Ramindra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.188-188
    • /
    • 2017
  • Rainfall is an important input to hydrological models. The accuracy of hydrological studies for water resources and floods management depend primarily on the estimation of rainfall. Thailand is among the countries that have regularly affected by floods. Flood forecasting and warning are necessary to prevent or mitigate loss and damage. Merging near real time satellite-based precipitation estimation with relatively high spatial and temporal resolutions to ground gauged precipitation data could contribute to reducing uncertainty and increasing efficiency for flood forecasting application. This study tested the applicability of satellite-based rainfall for water resources management and flood forecasting. The objectives of the study are to assess uncertainty associated with satellite-based rainfall estimation, to perform bias correction for satellite-based rainfall products, and to evaluate the performance of the bias-corrected rainfall data for the prediction of flood events. This study was conducted using a case study of Thai catchments including the Chao Phraya, northeastern (Chi and Mun catchments), and the eastern catchments for the period of 2006-2015. Data used in the study included daily rainfall from ground gauges, telegauges, and near real time satellite-based rainfall products from TRMM, GSMaP and PERSIANN CCS. Uncertainty in satellite-based precipitation estimation was assessed using a set of indicators describing the capability to detect rainfall event and efficiency to capture rainfall pattern and amount. The results suggested that TRMM, GSMaP and PERSIANN CCS are potentially able to improve flood forecast especially after the process of bias correction. Recommendations for further study include extending the scope of the study from regional to national level, testing the model at finer spatial and temporal resolutions and assessing other bias correction methods.

  • PDF

Sulfate Reduction at pH 5 in a High-Rate Membrane Bioreactor: Reactor Performance and Microbial Community Analyses

  • Bijmans, Martijn F. M.;Dopson, Mark;Peeters, Tom W. T.;Lens, Piet N. L.;Buisman, Cees J. N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.698-708
    • /
    • 2009
  • High rate sulfate reduction under acidic conditions opens possibilities for new process flow sheets that allow the selective recovery of metals from mining and metallurgical waste and process water. However, knowledge about high-rate sulfate reduction under acidic conditions is limited. This paper investigates sulfate reduction in a membrane bioreactor at a controlled pH of 5. Sulfate and formate were dosed using a pH-auxostat system while formate was converted into hydrogen, which was used for sulfate reduction. Sulfide was removed from the gas phase to prevent sulfide inhibition. This study shows a high-rate sulfate-reducing bioreactor system for the frrst time at pH 5, with a volumetric activity of 188 mmol $SO_4^{2-}$/I/d and a specific activity of 81 mmol $SO_4^{2-}$volatile suspended solids/d. The microbial community at the end of the reactor run consisted of a diverse mixed population including sulfate-reducing bacteria.

A study on improving the IUU Fishing Index of Korea's distant water fisheries (한국의 원양어업 IUU어업지수 개선방안 연구)

  • Zang Geun KIM;Youjung KWON;Haewon LEE;Doo Nam KIM;Jaebong LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.4
    • /
    • pp.362-376
    • /
    • 2023
  • The IUU Fishing Index is composed of 40 indicators. These indicators were grouped by state responsibilities (flag, coastal, port, and general including market) defined in the FAO IPOA-IUU (2001) and then by type into vulnerability, prevalence, and response. A total of 152 coastal nations was surveyed. Korea's total combined IUU Fishing Index was 2.49 in 2019 and 2.91 in 2021, indicating a drop in the ranking to the third worst out of 152 countries followed by China and Russia in 2021. The indicators that increased the IUU fishing risk in 2021 compared to 2019 included seven indicators of prevalence and two indicators of response while those reducing the risk included one prevalence and one response indicator. The IUU Fishing Index revealed that many fisheries observers and monitoring, control and surveillance (MCS) practitioners active in the waters of RFMOs jurisdiction where Korean distant water vessels operate have mentioned concerns about the compliance with RFMO conservation measures or fishing practices. It suggested that strengthening management intervention in the fishing sector is needed. The primary tool for management is the MCS system. Given the logistical difficulty of oversight from land, air and at-sea, there is a need to enhance MCS strategies through logbook data, at-sea observer and electronic monitoring program. It also suggested that MSC fisheries certification and fisheries improvement projects, which are widely used for improving fishing sector performance, could contribute to the eradication of IUU fishing and the promotion of sustainable distant water fisheries.

A Study of the Performance Improvement of a Centrifugal Separator for Gas-Liquid Two-Phase Flow (기액이상류 원심분리기의 성능개선에 관한 연구)

  • Kim, Jin-Man;Lee, Jun-Hee;Yoon, Yong-Kwan;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3215-3220
    • /
    • 2007
  • Gas-liquid separator has been designed for the sake of reducing expenses associated with production operations. To date, a number of gas-liquid separators have been installed and put to use for various applications. Despite the advantages of simple and compact configuration of separator with no moving part, its efficient operation is limited in terms of total pressure losses, separation performance and flow-induced noise and vibration, which are closely associated with the very complicated flow phenomena involved. In the present study, a gas-liquid centrifugal separator with a swirl vane is investigated for the purpose of water separation from compressed moisture air. The 3D Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Based upon the obtained solutions, tangential velocities, centrifugal forces, vortices and total pressure losses are analyzed to find out the best design parameters. From the present study, several attempts are made to improve the performance of conventional separators of centrifugal type.

  • PDF

Effect of Guide Nozzle Shape on the Performance Improvement of a Very Low Head Cross Flow Turbine

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • The cross flow turbine attracts more and more attention for its relatively wide operating range and simple structure. In this study, a novel type of micro cross flow turbine is developed for application to a step in an irrigational channel. The head of the turbine is only H=4.3m and the turbine inlet channel is open ducted type, which has barely been studied. The efficiency of the turbine with inlet open duct channel is relatively low. Therefore, a guide nozzle on the turbine inlet is attached to improve the performance of the turbine. The guide nozzle shapes are investigated to find the best shape for the turbine. The guide nozzle plays an important role on directing flow at the runner entry, and it also decreases the negative torque loss by reducing the pressure difference in Region 1. There is 12.5% of efficiency improvement by attaching a well shaped guide nozzle on the turbine inlet.

Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in Power Plant Boilers with FGR System (FGR 시스템 공력 플랜트 보일러의 성능 및 배기 배출물에 미치는 재순환 배기의 영향)

  • Bae, Myung-Whan;Jung, Kwong-Ho;Choi, Seung-Chul;Cho, Yong-Soo;Kim, Yi-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1686-1691
    • /
    • 2004
  • The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air(OFA) damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing $NO_{x}$ emissions. To activate the combustion, the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between $0^{\circ}$ and $90^{\circ}$ , and the OFA with 0 to 20% into the flame is supplied, as the combustion air supplied to burner is reduced. It is found that the fuel consumption rate divided by evaporation rate does not show an obvious tendency to increase or decrease with rising the FOR rate, and $NO_{x}$ emissions are decreased, at the same OF A damper opening, as FOR rates are elevated and boiler loads are dropped.

  • PDF