• Title/Summary/Keyword: Water reducing agent

Search Result 267, Processing Time 0.03 seconds

The Effect of Cement Admixtures on Solidification of Tannery Sludge based Cement Method (피혁슬러지 고형화시 시멘트 혼화제의 영향)

  • 주소영;박상찬;전태성;손종렬;김태영
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.4
    • /
    • pp.36-44
    • /
    • 2003
  • The cement-based system among S/S(Solidification/Stabilization) is widely used to treat hazardous wastes. In this study, tannery sludge was solidified to evaluate the stabilization effects of using admixtures in the cement-based S/S. Fly ash as substitute also used to increase the strength of the S/S of hazardous waste. The compressive strength measurement and leaching experiment of chromium metal of solidified mortar were carried out to compare and evaluate the physical and chemical characteristics of solidified hazardous waste sludge. From the result of this study, there was increased of compressive strength by using AEW-3(early-hardening AE water reducing agent), and leaching concentration of chromium became low enough to satisfy the regulatory criteria. The successful solidification for the organic contaminant and heavy metal in hazardous waste should enable to treat by cement-based system using early-hardening AE water reducing admixture and fly ash as substituted cement.

Strength Properties of Polymer-Modified Mortar with High-Range Water- Reducing Agents (고성능 감수제를 첨가한 폴리머 시멘트 모르타르의 강도 특성)

  • 이윤수;주명기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.811-815
    • /
    • 2003
  • The effects of high-range water-reducing agent (WRA) content and polymer-cement ratio on the strength properties of autoclaved SBR-modified mortars with WRA are examined. As a result, the flexural strength of the autoclaved SBR-modified mortars with WRAs tends to increase with increasing WRA content and polymer-cement ratio, and reaches a maximum at a WRA content of 2.0%. The compressive strength of the autoclaved SBR-modified mortars with WRAs is inclined to increase with increasing WRA content and polymer-cement ratio, and reaches a maximum at a WRA content of 2.0% and a polymer-cement ratio of 10%. From the test results, the addition of the WRAs is effective for improving strength properties of the autoclaved SBR-modified mortars.

  • PDF

An Experimental Study on the Quality Properties of High Strength Concrete by the Replacement Ratio SFFB as Substitutes of Silica-fume (실리카 흄 대체재로 활용 가능한 SFFB의 치환율에 따른 고강도 콘크리트의 품질특성에 관한 실험적 연구)

  • Lim, Byung-Hoon;Lee, Sang-Soo;Yun, Hyun-Do;Yoon, Gil-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.87-92
    • /
    • 2010
  • This study set up 25, 35% for silica fume, SFFB's 2 level and water-combination material ratio, silica fume 10% for substitution ratio, and 4 level of SFFB 5, 10, 15(%) in order to compare and analyze the quality characteristic of ultra high strength concrete according to the substitution ratio of silica fume free binder (SFFB) that can be utilized as a substitute material for silica fume. As a result of an experimentation, the lower water-combination material ratio was, the higher addition ratio of high performance water-reducing agent for securing target liquidity increased, and it indicated the tendency that addition ratio of high performance water-reducing agent decreases because of material characteristic that SFFB has a lower absorptiveness than silica fume. The best strength was shown when SFFB substitution ratio is 10% at compressive strength and when substitution ratio is 15% at tensile strength, and it was indicated that at autogenous shrinkage contraction decreases compared to Plain(SF) regardless of substitution ratio of W/B and SFFB.

Evaluate of Electrochemical Characteristics in Electrolyzed Reduced Water

  • Park, Sung-Ho;Yun, Su-Jin;Kim, Jeong-Sik;Shin, Hyun-Su;Park, Soo-Gil
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.85-90
    • /
    • 2011
  • Active oxygen species or free radicals are considered to cause extensive oxidative damage to biological macromolecules, which brings about a variety of diseases as well as aging. Electrolyzed reduced water(ERW) has been regarded as a ideal antioxidative agent in recent years. ERW is produced by passing a diluted salt solution through an electrolytic cell, within which the anode and cathode are separated by membrane. It can be produced reactive materials in ERW near the cathode during the electrolysis of water. ERW have the following advantages over other traditional cleaning agents: effective antioxidative agent, easy preparation, inexpensive, and environmentally friendly. The main advantage of ERW is its safety and antioxidative effect. ERW with strong reducing potential can be used to remove dirt and grease from items such as cutting boards and other kitchen utensils. The primary aim of this study is the activation mechanism of oxidation reduction potentials, ion conductivity, pH, and electrochemical properties with reactive materials in ERW.

EVALUATION OF IN VITRO SKIN PERMEATION OF UV FILTERS

  • Song, Young-Sook;Kim, Hyo-Joong;Lee, Cheon-Koo;Cho, Wan-Goo;Kang, She-Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.38-44
    • /
    • 1998
  • The skin permeation and the skin primary irritation of two UV filters from caprylic capryl triglyceride (oil), oil in water (O/W) and water in oil (W/O) emulsions, were evaluated. We selected octyl moth-oxycinnamate (OMC) broadly used in cosmetics and polymeric sunscreen agent (PSA, average MW: 2,000) synthesized by the coupling reaction of 2-ethylhexyl 4-hydroxycinnamate with poly vinylbenzyl chloride, as model UV filters. For in vitro skin permeation experiments, Franz diffusion cells (effective diffusion area:1.766cm) and the excised skin of female hairless mouse aged 8 weeks were used. Oil or emulsion containing UV filters was applied in the donor compartment. The skin primary irritation was evaluated with fe-male guinea pigs (8-10 weeks,350-400 g). In oil and emulsions, the skin permeability and the skin primary irritation of PSA were lower than those of OMC. The skin permeability of UV filters was lower when they were in oil-in-water emulsion (OIW) than water-in-oil emulsion (W/O). We suggest that O/W system would be more useful when compared with W/O system, and PSA could be a good candidate for a future sunscreen agent for reducing the skin irritation.

  • PDF

Electroless Plated Copper Thin Film for Metallization on Printed Circuit Board : Neutral Process (인쇄회로기판상의 금속 배선을 위한 구리 도금막 형성 : 무전해 중성공정)

  • Cho, Yang-Rae;Lee, Youn-Seoung;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.661-665
    • /
    • 2013
  • We investigated the characteristics of electroless plated Cu films on screen printed Ag/Anodized Al substrate. Cu plating was attempted using neutral electroless plating processes to minimize damage of the anodized Al substrate; this method used sodium hypophosphite instead of formaldehyde as a reducing agent. The basic electroless solution consisted of $CuSO_4{\cdot}5H_2O$ as the main metal source, $NaH_2PO_2{\cdot}H_2O$ as the reducing agent, $C_6H_5Na_3O_7{\cdot}2H_2O$ and $NH_4Cl$ as the complex agents, and $NiSO_4{\cdot}6H_2O$ as the catalyser for the oxidation of the reducing agent, dissolved in deionized water. The pH of the Cu plating solutions was adjusted using $NH_4OH$. According to the variation of pH in the range of 6.5~8, the electroless plated Cu films were coated on screen printed Ag pattern/anodized Al/Al at $70^{\circ}C$. We investigated the surface morphology change of the Cu films using FE-SEM (Field Emission Scanning Electron Microscopy). The chemical composition of the Cu film was determined using XPS (X-ray Photoelectron Spectroscopy). The crystal structures of the Cu films were investigated using XRD (X-ray Diffraction). Using electroless plating at pH 7, the structures of the plated Cu-rich films were typical fcc-Cu; however, a slight Ni component was co-deposited. Finally, we found that the formation of Cu film plated selectively on PCB without any lithography is possible using a neutral electroless plating process.

Evaluation of Antioxidant Activities of Water Extract from Microwave Torrefied Oak Wood

  • Nam, Jeong Bin;Oh, Geun Hye;Yang, Seung Min;Lee, Seok-Eon;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.178-188
    • /
    • 2018
  • The aim of this study was to assess the in vitro potential of water extract from torrefied oak wood as a natural antioxidant. The antioxidant potential of the extracts was assessed by employing different in vitro assays, including reducing power, DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)], and FRAP (ferric reducing antioxidant potential) assays. The DPPH activity of the extract was increased in a dose-dependent manner. Measurement of total flavonoid content of water extract from torrefied oak wood was achieved using an aluminum chloride colorimetric assay; the extract contained 192.12 mg/g flavonoid, which was significantly high when compared with standard quercetin. The results obtained in this study indicate that water extract from torrefied oak wood has significant potential for use as a natural antioxidant agent.

Corrosion of Copper in Anoxic Ground Water in the Presence of SRB

  • Carpen, L.;Rajala, P.;Bomberg, M.
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.147-153
    • /
    • 2018
  • Copper is used in various applications in environments favoring and enabling formation of biofilms by naturally occurring microbes. Copper is also the chosen corrosion barrier for nuclear waste in Finland. The copper canisters should have lifetimes of 100,000 years. Copper is commonly considered to be resistant to corrosion in oxygen-free water. This is an important argument for using copper as a corrosion protection in the planned canisters for spent nuclear-fuel encapsulation. However, microbial biofilm formation on metal surfaces can increase corrosion in various conditions and provide conditions where corrosion would not otherwise occur. Microbes can alter pH and redox potential, excrete corrosion-inducing metabolites, directly or indirectly reduce or oxidize the corrosion products, and form biofilms that create corrosive microenvironments. Microbial metabolites are known to initiate, facilitate, or accelerate general or localized corrosion, galvanic corrosion, and intergranular corrosion, as well as enable stress-corrosion cracking. Sulfate-reducing bacteria (SRB) are present in the repository environment. Sulfide is known to be a corrosive agent for copper. Here we show results from corrosion of copper in anoxic simulated ground water in the presence of SRB enriched from the planned disposal site.

Evaluation of Compressive Strength and Freeze-thaw Resistance Properties of Concrete using Superabsorbent Polymer (고 흡수성 폴리머를 혼입한 콘크리트의 압축 강도 및 동결융해 저항성 평가)

  • Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.86-94
    • /
    • 2020
  • When the Superabsorbent Polymer (SAP) is added into concrete, the slump decreases rapidly, deteriorating the workability, the internal curing effect can be obtained through the water absorption and discharge process, and the internal voids of the concrete are increased. In this study, the effects of internal curing and voids were evaluated by evaluating the compressive strength, freeze-thaw resistance, and chloride penetration resistance of SAP-adding concrete that secured workability using a water reducing agent. Also, the internal curing effect of SAP was evaluated by dividing the curing conditions of concrete into water curing and sealed curing. From the result, as the SAP adding ratio increased, the amount of water reducing agent increased, and as for the compressive strength, the SAP adding ratio of 1.5% showed the greatest compressive strength. In particular, in the case of sealed curing showed higher compressive strength than the water curing. It is considered that the compressive strength increased due to the reduction of the effective water-cement ratio and the internal curing effect. Adding 1.0~1.5% of SAP improved the freeze-thaw resistance similar to the case of adding the AE agent, and the addition of more than 1.0% of SAP improved the chloride penetration resistance. The optimal adding ratio of SAP is 1.5%, and the adding ratio of 2.0% or more adversely affects the compressive strength and freeze-thaw resistance.

An Effect on the Properties of High Flowing Concrete by Materials Variations-Focused on Inchon LNG Receiving Terminal #213,214 Tanks- (사용재료의 품질변동이 고유동콘크리트의 특성에 미치는 영향-인천 LNG 인수기지 #213,214-TK를 중심으로-)

  • 권영호;김무한
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.99-107
    • /
    • 2000
  • This research investigates experimentally an effect on the properties of the high flowing concrete to be poured in the under-ground slurry wall of Inchon LNG receiving terminal(#213,214-TK) according to variations of concrete materials. Variables for sensitivity test were selected items as followings. 1) Concrete temperature (3cases), 2) Unit water (5cases), 3) Fineness modulus of fine aggregate (5cases), 4) Particle size of lime stone powder (3cases), 5) Replacement ratio of blast-furnace slag (4cases) and 6) Addition ratio of high range water reducing agent (5cases). And fresh conditions of the super flowing concrete should be satisfied with required range including slump flow(65$\pm$5cm), 50cm reaching time of flow(4~10sec), V-lot flowing time(10~ 20sec), U-box height(min. 300mm) and air content(4$\pm$1%). As results for sensitivity test, considered flow-ability, self-compaction and segregation resistance of the high flowing concrete, material variations and conditions of fresh concrete should be satisfied with the range as follwings. 1) Concrete temperature are 10~2$0^{\circ}C$(below 3$0^{\circ}C$), 2) Surface moisture of fine aggregate is within $\pm$ 0.6%, 3) Fineness modulus of fine aggregate is 2.6$\pm$0.2, 4)Replacement ratio of blast-furnace slag is 45~50% and 5) Addition ratio of high range water reducing agent is within 1%. Based on the specification for quality control, we successfully finished concrete pouring on the under-ground slurry wall having 75,000㎥(#213,214-TK) and accumulated real date in site.