• Title/Summary/Keyword: Water quality impact

Search Result 799, Processing Time 0.077 seconds

Selecting probability distribution of event mean concentrations from paddy fields (논으로부터 배출되는 유량가중평균 수질농도의 적정 확률분포 선정)

  • Jung, Jaewoon;Choi, Dongho;Yoon, Kwangsik
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.4
    • /
    • pp.285-295
    • /
    • 2014
  • In this study, we analyzed probability distribution of EMCs (Event Mean Concentration) of COD, TOC, T-N, T-P and SS from rice paddy fields and compared the mean values of observed EMCs and the median values of estimated EMCs ($EMC_{50}$) through probability distribution. The field monitoring was conducted during a period of four crop-years (from May 1, 2008, to September 30. 2011) in a rice cultivation area located in Emda-myun, Hampyeong gun, Jeollanam-do, Korea. Four probability distributions such as Normal, Log-normal, Gamma, and Weibull distribution were used to fit values of EMCs from rice paddy fields. Our results showed that the applicable probability distributions were Normal, Log-normal, and Gamma distribution for COD, and Normal, Log- Normal, Gamma and Weibull distribution for T-N, and Log-normal, Gamma and Weibull distribution for T-P and TOC, and Log-normal and Gamma distribution for SS. Log-normal and Gamma distributions were acceptable for EMCs of all water quality constituents(COD, TOC, T-N, T-P and SS). Meanwhile, mean value of observed COD was similar to median value estimated by the gamma distribution, and TOC, T-N, T-P, and SS were similar to median value estimated by log-normal distribution, respectively.

Comparison of heavy metal uptake of LID and roadside plants (도로변 및 LID 시설 식재 식물의 중금속 축적량 비교)

  • Lee, YooKyung;Choi, Hyeseon;Reyes, Nash Jett;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.44-53
    • /
    • 2021
  • Urban stormwater runoff contains heavy metals that accumulate in on-site treatment systems, thus resulting to facility deterioration and maintenance problems. In order to resolve these problems, low impact development (LID) technologies that promote natural materials circulation are widely used. LID facilities are capable of treating heavy metals in the runoff by means of plant uptake; however, the uptake or phytoremediation capabilities of plants have not been studied extensively, making it difficult to select the most suitable plant species for a certain LID design. This study investigated the vegetative components of an LID facility, roadside plants, and plants in landscape areas with different heavy metal exposure and frequency to determine the uptake capabilities of different plant species. The plants harvested inside the LID facilities and roadsides with high vehicular traffic exhibited greater heavy metal concentrations in their tissues as compared with the plants in landscape areas. Generally, the accumulation of heavy metals in the plant tissues were found to be influenced by the environmental characteristics (i.e. influent water quality, air pollution level, etc.). Dianthus, Metasequoia, Rhododendron lateritium, and Mugwort were found to be effective in removing Zn in the urban stormwater runoff. Additionally, Dianthus, Metasequoia, Mugwort, and Ginkgo Biloba exhibited excellent removal of Cu. Cherry Tree, Metasequoia, and mugwort efficiently removed Pb, whereas Dianthus was also found to be effective in treating As, Cr, and Cd in stormwater. Overall, different plant species showed varying heavy metal uptake capabilities. The results of this study can be used as an effective tool in selecting suitable plant species for removing heavy metals in the runoff from different land use types.

Fate Analysis and Impact Assessment for Vehicle Polycyclic Aromatic Hydrocarbons (PAHs) Emitted from Metropolitan City Using Multimedia Fugacity Model (다매체거동모델을 이용한 대도시 자동차 배출 Polycyclic Aromatic Hydrocarbons (PAHs) 거동 해석 및 영향평가)

  • Rhee, Gahee;Hwangbo, Soonho;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.479-495
    • /
    • 2018
  • This study was carried out to research the multimedia fate modeling, concentration distribution and impact assessment of polycyclic aromatic hydrocarbons (PAHs) emitted from automobiles, which are known as carcinogenic and mutation chemicals. The amount of emissions of PAHs was determined based on the census data of automobiles at a target S-city and emission factors of PAHs, where multimedia fugacity modeling was conducted by the restriction of PAHs transfer between air-soil at the impervious area. PAHs' Concentrations and their distributions at several environmental media were predicted by multimedia fugacity model (level III). The residual amounts and the distributions of PAHs through mass transfer of PAHs between environment media were used to assess the health risk of PAHs at unsteady state (level IV), where the sensitivity analyses of the model parameter of each variable were conducted based on Monte Carlo simulation. The experimental result at S-city showed that Fluoranthene among PAHs substances are the highest residual concentrations (60%, 53%, 32% and 34%) at all mediums (atmospheric, water, soil, sediment), respectively, where most of the PAHs were highly accumulated in the sediment media (more than 80%). A result of PAHs concentration changes in S-city over the past 34 years identified that PAHs emissions from all environmental media increased from 1983 to 2005 and decreased until 2016, where the emission of heavy-duty vehicle including truck revealed the largest contribution to the automotive emissions of PAHs at all environment media. The PAHs concentrations in soil and water for the last 34 years showed the less value than the legal standards of PAHs, but the PAHs in air exceeded the air quality standards from 1996 to 2016. The result of this study is expected to contribute the effective management and monitoring of toxic chemicals of PAHs at various environment media of Metropolitan city.

Effect of Freshwater Discharge on the Seawater Quality (Nutrients, Organic Materials and Trace Metals) in Cheonsu Bay (여름철 천수만 해수에서 담수 대량 방류에 따른 영양염, 유기물 및 미량금속의 변화)

  • LEE, JI-YOON;CHOI, MAN-SIK;SONG, YUNHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.519-534
    • /
    • 2019
  • When the fresh water from the artificial lakes (Ganwolho and Bunamho) were discharged to Cheonsu Bay in summer to prevent the flood over the reclaimed farmland near the lakes, the impact on water qualities (nutrients, organic matters, trace metals) within the bay was investigated through four surveys (June, July, August and October, 2011). Dissolved inorganic nitrogen (DIN) increased about as much as 3-4 times over the whole water column when the freshwater was discharged. And the main species composition of DIN changed from ammonia to nitrate. Dissolved inorganic phosphorus (DIP) decreased as much as 2 times in surface waters, but increased as much as 1.5 times in deep waters, and also silicate concentrations increased as much as 3-4 times in deep waters of the inner bay. The N/P ratios in Chunsu bay seawaters were much higher (2 to 7 times) than the Redfield ratio when the freshwaters were discharged, which indicated the phosphorus limiting in the phytoplankton growth. Dissolved organic carbon (DOC) and nitrogen (DON) increased as much as about 2 times. In addition, particulate organic matters (POC, PON, POP, Bio-Si) increased as much as above 2 times in the surface waters of the inner bay. Trace metals (Fe, Mn, Co, Ni, Cu) increased in the surface waters of the inner bay, but dissolved Cd concentrations decreased as much as 2 times. Therefore, when the contaminated fresh waters from the artificial lakes were discharged into the bay, nutrients, organic matters and trace metals generally increased compared to normal period. Since the phytoplankton bloom occurred in the surface waters of the inner bay, dissolved oxygens at the surface waters were oversaturated and hence hypoxic in the deep waters. Highly enriched nutrients concentrations were found in deep waters of the inner bay, which was accompanied with the hypoxic condition. Finally, the water quality in the inner bay of the Chunsu bay was deteriorated from less than grade 3 in normal periods to grade 5 when the freshwaters from the artificial lakes were discharged in summer.

Review of a Plant-Based Health Assessment Methods for Lake Ecosystems (식물에 의한 호수생태계 건강성 평가법에 대한 고찰)

  • Choung, Yeonsook;Lee, Kyungeun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.145-153
    • /
    • 2013
  • It is a global trend that the water management policy is shifting from a water quality-oriented assessment to the aquatic ecosystem-based assessment. The majority of aquatic ecosystem assessment systems were developed solely based on physicochemical factors (e.g., water quality and bed structure) and a limited number of organisms (e.g., plankton and benthic organisms). Only a few systems use plants for a health assessment, although plants are sensitive indicators reflecting long-term disturbances and alterations in water regimes. The development of an assessment system is underway to evaluate and manage lakes as ecosystem units in the Korean Ministry of Environment. We reviewed the existing multivariate health assessment methods of other leading countries, and discussed their applicability to Korean lakes. The application of multivariate assessment methods is costly and time consuming, in addition to the correlation problem among variables. However, a single variable is not available at this moment, and the multivariate method is an appropriate system due to its multidimensional evaluation and cumulative data generation. We, therefore, discussed multivariate assessment methods in three steps: selecting metrics, scoring metrics and assessing indices. In the step of selecting metrics, the best available metrics are species-related variables, such as composition and abundance, as well as richness and diversity. Indicator species, such as sensitive species, are the most frequently used in other countries, but their system of classification in Korea is not yet complete. In terms of scoring metrics, the lack of reference lakes with little anthropogenic impact make this step difficult, and therefore, the use of relative scores among the investigated lakes is a suitable alternative. Overall, in spite of several limitations, the development of a plant-based multivariate assessment method in Korea is possible using mostly field research data. Later, it could be improved based on qualitative metrics on plant species, and with the emergence of further survey data.

Ecological Health Assessments on Turbidwater in the Downstream After a Construction of Yongdam Dam (용담댐 건설후 하류부 하천 생태계의 탁수영향 평가)

  • Kim, Ja-Hyun;Seo, Jin-Won;Na, Young-Eun;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.130-142
    • /
    • 2007
  • This study was to examine impacts of turbid water on fish community in the downstream of Yongdam Dam during the period from June to October 2006. For the research, we selected six sampling sites in the field: two sites were controls with no influences of turbid water from the dam and other remaining four sites were the stations for an assessment of potential turbid effects. We evaluated integrative health conditions throughout applications of various models such as necropsy-based fish health assessment model (FHA), Index of Biological Integrity (IBI) using fish assemblages, and Qualitative Habitat Evaluation Index (QHEI). Laboratory tests on fish exposure under 400 NTU were performed to find out impact of turbid water using scanning electron microscope (SEM). Results showed that fine solid particles were clogging in the gill in the treatments, while particles were not found in the control. This results indicate that when inorganic turbidity increases abruptedly, fish may have a mechanical abrasion or respiratory blocking. The stream health condition, based on the IBI values, ranged between 38 and 48 (average: 42), indicating a "excellent" or "good" condition after the criteria of US EPA (1993). In the mean time, physical habitat condition, based on the QHEI, ranged 97 to 187 (average 154), indicating a "suboptimal condition". These biological outcomes were compared with chemical dataset: IBI values were more correlated (r=0.526, p<0.05, n=18) with QHEI rather than chemical water quality, based on turbidity (r=0.260, p>0.05, n=18). Analysis of the FHA showed that the individual health indicated "excellent condition", while QHEI showed no habitat disturbances (especially bottom substrate and embeddeness), food-web, and spawning place. Consequently, we concluded that the ecological health in downstream of Yongdam Dam was not impacted by the turbid water.

Evaluation on the adsorption and desorption capabilities of filter media applied to the nonpoint source pollutant management facilities (비점오염 저감시설에 적용되는 여재의 흡착 및 탈착 능력 평가)

  • Moon, Soyeon;Hong, Jungsun;Choi, Jiyeon;Yu, Gigyung;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Urbanization causes many environmental, hydrological and ecological problems such as distortion of the natural water circulation system, increase in nonpoint source pollutants in stormwater runoff, degradation of surface water quality, and damage to the ecosystem. Due to the increase in impervious surface by urbanization, developed countries apply low impact development (LID) techniques as important alternatives to reduce the impacts of urbanization. In Korea, LID techniques were employed since 2012 in order to manage nonpoint source pollutants. LID technology is a technique for removing pollutants using a variety of physical, chemical and biological mechanisms in plants, microorganisms and filter media with the reduced effluence of stormwater runoff by mimicking natural water circulation system. These LID facilities are used in a variety of filter media, but an assessment has not been carried out for the comprehensive comparison evaluation of adsorption and desorption characteristics for the pollutant removal capacity. Therefore, this study was conducted to analyze the adsorption and desorption characteristics of various filter media used in the LID facilities such as sand, gravel, bioceramic, wood chips and bottom ash etc. in reducing heavy metals(Pb, Cu). In this study, the adsorption affinity for Pb in all filter media was higher than Cu. Pseudo second order equation and Langmuir-3 isotherm are more applicable in the adsorption kinetic model and adsorption isotherm model, respectively. As a result of the desorption experiment, the filter media does not exceed KSLT which is the hazardous substance leaching limit, showing the capability of the filter media in LID. The bioceramic and woodchip as filter medias were evaluated and exhibited excellent adsorption capacity for Pb.

Water Environment and Freshwater Algae in the Upstream of the Tamjin River Dam (탐진강댐 상류하천에서 수환경과 담수조류)

  • Shin, Jae-Ki;Cho, Kyung-Je
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.2
    • /
    • pp.109-121
    • /
    • 2001
  • Water environment and freshwater algae were studied in the upstream of the Tamjin River Dam. Among the environmental factors, DO concentration in the Tamjin River ranged from 9.0 mg $O_2/l$ to 9.2 mg $O_2/l$, pH from 7.0 to 7.1 and conductivity from $98{\mu}S/cm$ to $100{\mu}S/cm$. Average concentration of $NH_4$ and $NO_3$ ranged from $40{\mu}g\;N/l$ to $56{\mu}g\;N/l$ and from $489{\mu}g\;N/l$ to $611{\mu}g\;N/l$, respectively. $NO_3$ was more plentiful above 9~15 fold than that of $NH_4$. Average concentrations of soluble reactive phosphorus and soluble reactive silicon were $2{\mu}g\;P/l$ and 1.6 mg Si/l, respectively. Particulaly, Si nutrient increased by heavy rain events during summer season. The ratios of N/P and Si/P ranged from 248 to 261 and from 640 to 740, respectively. It is assumed that P would be limiting nutrient on the freshwater algal growth. Average content of planktonic chlorophyll-a ranged from $5{\mu}g/l$ to $13{\mu}g/l$. Mean contents of chlorophyll-a, phaeo-pigment and ash-free dry matter of periphyton were $50.3mg/m^2$, $11.9mg/m^2$, $11.5g/m^2$ in the main stream and $30.1mg/m^2$, $5.6mg/m^2$, $7.8g/m^2$ in the tributary. By comparison of the epilithon biomass, the main stream was higher with 1.5~2.1 fold than the tributary. The impotant algae were composed of diatom Achnanthes linearis, A. minutissima, Fragilaria crotonensis, Gomphonema gracile, Tabellaria flocculosa and blue-green algae Microcystis aeruginosa. In the relative abundance of the phytoplankton and epilithon, the serial dominance were diatom > green algae > blue-green algae, and diatoms were very abundant in comparison with other algal phylum.

  • PDF

A Study on the Applicability of Soilremediation Technology for Contaminated Sediment in Agro-livestock Reservoir (농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구)

  • Jung, Jaeyun;Chang, Yoonyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.157-181
    • /
    • 2020
  • Sediments from rivers, lakes and marine ports serve as end points for pollutants discharged into the water, and at the same time serve as sources of pollutants that are continuously released into the water. Until now, the contaminated sediments have been landfilled or dumped at sea. Landfilling, however, was expensive and dumping at sea was completely banned due to the London Convention. Therefore, this study applied contaminated sedimentation soil of 'Royal Palace Livestock Complex' as soil purification method. Soil remediation methods were applied to pretreatment, composting, soil washing, electrokinetics, and thermal desorption by selecting overseas application cases and domestically applicable application technologies. As a result of surveying the site for pollutant characteristics, Disolved Oxigen (DO), Suspended Solid (SS), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP) exceeded the discharged water quality standard, and especially SS, COD, TN, and TP exceeded the standard several tens to several hundred times. Soil showed high concentrations of copper and zinc, which promote the growth of pig feed, and cadmium exceeded 1 standard of Soil Environment Conservation Act. In the pretreatment technology, hydrocyclone was used for particle size separation, and the fine soil was separated by more than 80%. Composting was performed on organic and Total Petroleum Hydrocarbon (TPH) contaminated soils. TPH was treated within the standard of concern, and E. coli was analyzed to be high in organic matter, and the fertilizer specification was satisfied by applying the optimum composting conditions at 70℃, but the organic matter content was lower than the fertilizer specification. As a result of continuous washing test, Cd has 5 levels of residual material in fine soil. Cu and Zn were mostly composed of ion exchange properties (stage 1), carbonates (stage 2), and iron / manganese oxides (stage 3), which facilitate easy separation of contamination. As a result of applying acid dissolution and multi-stage washing step by step, hydrochloric acid, 1.0M, 1: 3, 200rpm, 60min was analyzed as the optimal washing factor. Most of the contaminated sediments were found to satisfy the Soil Environmental Conservation Act's standards. Therefore, as a result of the applicability test of this study, soil with high heavy metal contamination was used as aggregate by applying soil cleaning after pre-treatment. It was possible to verify that it was efficient to use organic and oil-contaminated soil as compost Maturity after exterminating contaminants and E. coli by applying composting.

Nutritional Properties by Composting Process of Algae Biomass as Soil Conditioner (조류 바이오매스를 이용한 토양개량제의 퇴비화 과정에 따른 영양성분 특성)

  • Ahn, Chang-Hyuk;Lee, Saeromi;Park, Jae-Roh
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.604-615
    • /
    • 2019
  • In this study, we produce a new type of the algae soil conditioner(ASC) using discarded algae biomass through a composting process and evaluate its nutritional characteristics. As the main ingredient, the ASCs used algae biomass collected through the coagulation-floating method and made by adding a variety of additional supporting materials (sawdust, pearlite, oilcake etc.). ASCs were divided into 0% in blank, 11.7% in ASC1, 21.6% in ASC2, 37.6% in ASC3, 59.5% in ASC4, and composted during 127 days. ASCs showed a sharp increase in temperature by aerobic microbial reaction, and 6~7 high and low temperature peaks were observed. As a result of physicochemical analysis, mineralization proceeded according to decomposing the organic matter and there was a marked increase not only in macronutrients (TN, P2O5, K2O), but also in secondary macronutrients (CaO, MgO). The microbial community change was found in stage 1 (bacteria, filamentous fungi) → stage 2 (actinomycetes, bacteria) → stage 3 (Bacillus sp.), depending on the maturation process. It was estimated that microbial transition was closely related to temperature change and nutritional behavior. The quality of soil conditioner can be determined according to the maturity of compost process, and it was determined that effective microbial activity could be induced by controlling algae biomass below 59.5% in this study. In conclusion, we found out the possibility of manufacturing and utilizing soil conditioner recycled algae biomass and if further technological development is made on the basis it can be used as an effective soil conditioner.