• Title/Summary/Keyword: Water quality characteristics

Search Result 3,565, Processing Time 0.027 seconds

Effect of Halal and Conventional Slaughtering Method with CO2 and N2 Gas Stunning on Physicochemical Traits of Chicken Breast Muscle and Small Intestine (도계 중 할랄방법에 CO2와 N2 가스기절처리가 닭 가슴살과 내장의 물리화학적 특성에 미치는 영향)

  • Song, Dong-Heon;Alam, Shahbubul Muhammad;Lee, Jeong-Ah;Hoa, Van Ba;Kang, Sun Moon;Kim, Hyoun Wook;Jeon, JinJoo;Kang, Hwan Ku;Cho, Soo-Hyun;Seol, Kuk-Hwan
    • Korean Journal of Poultry Science
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • We investigated the effects of stunning methods and gas treatments during slaughter on the quality characteristics of chicken breast and small intestine. Broilers (Ross 308) were stunned and slaughtered using halal, CO2, or N2 gas stunning methods (for 10 birds). After slaughter, the pH, proximate composition, color, water-holding capacity, cooking loss, and shear force of chicken breast muscle and small intestine were determined. Compared with the halal treatment, CO2 treatment resulted in higher pH and lower cooking loss (P<0.05), and the pH, color, and shear force of chicken breast muscle with N2 treatment were similar to those of the halal treatment (P>0.05). Compared with the halal treatment, the gas treatments resulted in lower pH and lightness and higher redness, yellowness, thickness, and shear force of the small intestine (P<0.05). However, compared with the CO2 treatment, the N2 treatment resulted in lower pH, redness, and yellowness, and higher lightness, thickness, and shear force. Overall, compared with the halal method, our results suggest that the use of N2 gas suppresses the discoloration and deterioration of the texture of chicken meat and small intestine caused by CO2 gas treatment in the gas stunning method.

Comparing Net CO2 Uptake of Schlumbergera truncata 'Pink Dew' Phylloclades in a Growth Chamber and a Greenhouse (생육상과 온실에서 게발선인장 '핑크듀'의 엽상경별 CO2 흡수율 비교)

  • Seo Hee Jung;Ah Ram Cho;Yoon Jin Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.64-71
    • /
    • 2023
  • Crassulacean acid metabolism (CAM) plants use surplus CO2 generated by cooling and heating at night when ventilation is not needed in a greenhouse. Schlumbergera truncata 'Pink Dew' is a multi-flowering cactus that needs more phylloclades for high-quality production. This study examined photosynthetic characteristics by the phylloclade levels of S. truncata in a growth chamber and a greenhouse for use of night CO2 enrichment. The CO2 uptake rate of the S. truncata's top phylloclade in a growth chamber exhibited a C3 pattern, and the second phylloclade exhibited a C3-CAM pattern. The CO2 uptake rate of the top phylloclade in a greenhouse showed a negative value both day and night, but those of the second phylloclade exhibited a CAM pattern. The stomatal conductance and water-use efficiency (WUE) of S. truncata at both the top and second phylloclades were higher in a growth chamber than in a greenhouse. The WUE of S. truncata in a growth chamber and a greenhouse was higher at the second phylloclade, which is a CAM pattern compared with those of the top phylloclade. The daily total net CO2 uptake of S. truncata was higher in a growth chamber than in a greenhouse. The daily total net CO2 uptake of S. truncata at the second phylloclade had the highest value of 155 mmol·m-2·d-1 in a growth chamber. The night total CO2 uptake of S. truncate at the second phylloclade was 3-fold higher in a growth chamber than in a greenhouse. S. truncata's second phylloclade exhibited a CAM pattern that uptake CO2 at night, and the second phylloclade, was more mature than the top phylloclade. A multi-flowering cactus S. truncata 'Pink Dew' efficiently uptake night surplus CO2 in the proper environmental condition with matured phylloclade.

Basic Study on Historical Repair Techniques for Landscape Architectural Facilities - Focusing on Government-managed Spaces in Joseon Dynasty - (전통조경 시설물의 역사적 수리기법에 관한 기초연구 - 조선시대 관영공간을 중심으로 -)

  • Kim, Min-Seon;Oh, Jun-Young
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.4
    • /
    • pp.8-20
    • /
    • 2023
  • Although the landscape architectural facilities need to be repaired according to historical and authentic techniques, the repair criteria of the standard specification for repairing cultural heritages still remain at a theoretical level, and there are little research analyzing detailed techniques from specific cases. This study discussed the repair techniques based on historical facts, around terraced flower beds, ponds, waterways and pavement in the government-managed spaces in the Joseon Dynasty. It analyzed the materials and finish of stone wall elements, the structural reinforcement and backfill materials, and topsoil surface protection measures, and drew out stones for foundation reinforcement, plastering material for agglutination, and stone processing techniques for the terraced flower beds. It examined the materials and structures of the rock revetment, foundation reinforcement and waterproofing techniques and drew out the outstanding characteristics of the foundation work, the recycle of used elements and the management of water quality, for the ponds. It primarily investigated the materials, foundation reinforcement and waterproofing techniques and discovered the repair techniques such as cover stone finishing methods, foundation and backfill materials, and flow reduction methods, for the waterways. Finally, it provided actual cases of the foundation composition, auxiliary materials and tools, and the use of cyperaceae and highlighted the existence of professional craftsmen called Bangjeonjang(方磚匠), for the pavement. This study is expected to be a staring point for discovering the repair techniques for landscape architectural facilities and used as basic data for revising specifications in the future.

Physicochemical and textural properties of thawed pork by vacuum tumbling (진공 텀블링을 이용한 해동 돈육의 이화학적 및 조직학적 특성)

  • Su-Jin Park;Won-Ho Hong;Seung-Min Oh;Chang-Hee Cho;Jiyeon Chun
    • Food Science and Preservation
    • /
    • v.31 no.3
    • /
    • pp.423-432
    • /
    • 2024
  • In this study, a vacuum tumbler with 4 impellers (DVT) was designed and applied for thawing frozen pork (vacuum -60 kPa, jacket 35℃, 1 rpm). Quality characteristics of the thawed pork were compared with those of industrially thawed meat by natural air at room temperature (NAT) and imported vacuum tumbler (IVT). The thawing time for frozen pork (303.36 kg) using DVT (165 min) was much shorter than that of NAT (4,200 min). DVT-thawed pork had lower drip loss (0.85%) than NAT (2.08%). DVT-thawed pork showed a pH of 5.92, a total bacterial count of 1.96±0.02 log CFU/g and no coliforms. Deteriorations in fat (TBARS 0.31±0.01 MDA mg/kg) and protein (VBN 5.67±1.98 mg%) in DVT-thawed pork were significantly lower than those of NAT (p<0.05). DVT-thawed pork had a high water-holding capacity (WHC, 97.5%). The hardness (34.59±0.46 N) and chewiness (188.21±0.17) of cooked DVT-thawed pork were about 5-6 times lower than those of NTA. Microstructure (SEM) showed myofibrillar damage in NAT-thawed pork, whereas dense myofibrillar structure was observed in DVT-thawed pork. DVT was better or similar to IVT in all evaluation parameters. The designed DVT is expected to be used as an efficient thawing method in terms of processing time and yield and to produce thawed meat with high WHC, soft texture, and low spoilage by minimizing tissue damage.

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF