• Title/Summary/Keyword: Water pressure ratio

Search Result 714, Processing Time 0.021 seconds

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF

Preparation of Pure CO2 Standard Gas from Calcium Carbonate for Stable Isotope Analysis (탄산칼슘을 이용한 이산화탄소 안정동위원소 표준시료 제작에 대한 연구)

  • Park, Mi-Kyung;Park, Sunyoung;Kang, Dong-Jin;Li, Shanlan;Kim, Jae-Yeon;Jo, Chun Ok;Kim, Jooil;Kim, Kyung-Ryul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • The isotope ratios of $^{13}C/^{12}C$ and $^{18}O/^{16}O$ for a sample in a mass spectrometer are measured relative to those of a pure $CO_2$ reference gas (i.e., laboratory working standard). Thus, the calibration of a laboratory working standard gas to the international isotope scales (Pee Dee Belemnite (PDB) for ${\delta}^{13}C$ and Vienna Standard Mean Ocean Water (V-SMOW) for ${\delta}^{18}O$) is essential for comparisons between data sets obtained by other groups on other mass spectrometers. However, one often finds difficulties in getting well-calibrated standard gases, because of their production time and high price. Additional difficulty is that fractionation processes can occur inside the gas cylinder most likely due to pressure drop in long-term use. Therefore, studies on laboratory production of pure $CO_2$ isotope standard gas from stable solid calcium carbonate standard materials, have been performed. For this study, we propose a method to extract pure $CO_2$ gas without isotope fractionation from a solid calcium carbonate material. The method is similar to that suggested by Coplen et al., (1983), but is better optimized particularly to make a large amount of pure $CO_2$ gas from calcium carbonate material. The $CaCO_3$ releases $CO_2$ in reaction with 100% pure phosphoric acid at $25^{\circ}C$ in a custom designed, evacuated reaction vessel. Here we introduce optimal procedure, reaction conditions, and samples/reactants size for calcium carbonate-phosphoric acid reaction and also provide the details for extracting, purifying and collecting $CO_2$ gas out of the reaction vessel. The measurements for ${\delta}^{18}O$ and ${\delta}^{13}C$ of $CO_2$ were performed at Seoul National University using a stable isotope ratio mass spectrometer (VG Isotech, SIRA Series II) operated in dual-inlet mode. The entire analysis precisions for ${\delta}^{18}O$ and ${\delta}^{13}C$ were evaluated based on the standard deviations of multiple measurements on 15 separate samples of purified $CO_2$. The pure $CO_2$ samples were taken from 100-mg aliquots of a solid calcium carbonate (Solenhofen-ori $CaCO_3$) during 8-day experimental period. The multiple measurements yielded the $1{\sigma}$ precisions of ${\pm}0.01$‰ for ${\delta}^{13}C$ and ${\pm}0.05$‰ for ${\delta}^{18}O$, comparable to the internal instrumental precisions of SIRA. Therefore, we conclude the method proposed in this study can serve as a way to produce an accurate secondary and/or laboratory $CO_2$ standard gas. We hope this study helps resolve difficulties in placing a laboratory working standard onto the international isotope scales and does make accurate comparisons with other data sets from other groups.

A Study on the Growth Diagnosis and Management Prescription for Population of Retusa Fringe Trees in Pyeongji-ri, Jinan(Natural Monument No. 214) (진안 평지리 이팝나무군(천연기념물 제214호)의 생육진단 및 관리방안)

  • Rho, Jae-Hyun;Oh, Hyun-Kyung;Han, Sang-Yub;Choi, Yung-Hyun;Son, Hee-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.115-127
    • /
    • 2018
  • This study was attempted to find out the value of cultural assets through the clear diagnosis and prescription of the dead and weakness factors of the Population of Retusa Fringe Trees in Pyeongji-ri, Jinan(Natural Monument No. 214), The results are as follows. First, Since the designation of 13 natural monuments in 1968, since 1973, many years have passed since then. In particular, despite the removal of some of the buried soil during the maintenance process, such as retreating from the fence of the primary school after 2010, Second, The first and third surviving tree of the designated trees also have many branches that are dead, the leaves are dull, and the amount of leaves is small. vitality of tree is 'extremely bad', and the first branch has already been faded by a large number of branches, and the amount of leaves is considerably low this year, so that only two flowers are bloomed. The second is also in a 'bad'state, with small leaves, low leaf density, and deformed water. The largest number 1 in the world is added to the concern that the s coverd oil is assumed to be paddy soils. Third, It is found that the composition ratio of silt is high because it is known as '[silty loam(SiL)]'. In addition, the pH of the northern soil at pH 1 was 6.6, which was significantly different from that of the other soil. In addition, the organic matter content was higher than the appropriate range, which is considered to reflect the result of continuous application for protection management. Fourth, It is considered that the root cause of failure and growth of Jinan pyeongji-ri Population of Retusa Fringe Trees group is chronic syndrome of serious menstrual deterioration due to covered soil. This can also be attributed to the newly planted succession and to some of the deaths. Fifthly, It is urgent to gradually remove the subsoil part, which is estimated to be the cause of the initial damage. Above all, it is almost impossible to remove the coverd soil after grasping the details of the soil, such as clayey soil, which is buried in the rootstock. After removal of the coverd soil, a pestle is installed to improve the respiration of the roots and the ground with Masato. And the dead 4th dead wood and the 5th and 6th dead wood are the best, and the lower layer vegetation is mown. The viable neck should be removed from the upper surface, and the bark defect should undergo surgery and induce the development of blindness by vestibule below the growth point. Sixth, The underground roots should be identified to prepare a method to improve the decompression of the root and the respiration of the soil. It is induced by the shortening of rotten roots by tracing the first half of the rootstock to induce the generation of new roots. Seventh, We try mulching to suppress weed occurrence, trampling pressure, and soil moisturizing effect. In addition, consideration should be given to the fertilization of the foliar fertilizer, the injection of the nutrients, and the soil management of the inorganic fertilizer for the continuous nutrition supply. Future monitoring and forecasting plans should be developed to check for changes continuously.

Studies on the Physical Properties of Major Tree Barks Grown in Korea -Genus Pinus, Populus and Quercus- (한국산(韓國産) 주요(主要) 수종(樹種) 수피(樹皮)의 이학적(理學的) 성질(性質)에 관(關)한 연구(硏究) -소나무속(屬), 사시나무속(屬), 참나무속(屬)을 중심(中心)으로-)

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.33 no.1
    • /
    • pp.33-58
    • /
    • 1977
  • A bark comprises about 10 to 20 percents of a typical log by volume, and is generally considered as an unwanted residue rather than a potentially valuable resourses. As the world has been confronted with decreasing forest resources, natural resources pressure dictate that a bark should be a raw material instead of a waste. The utilization of the largely wasted bark of genus Pinus, Quercus, and Populus grown in Korea can be enhanced by learning its physical and mechanical properties. However, the study of tree bark grown in Korea have never been undertaken. In the present paper, an investigative study is carried out on the bark of three genus, eleven species representing not only the major bark trees but major species currently grown in Korea. For each species 20 trees were selected, at Suweon and Kwang-neung areas, on the same basis of the diameter class at the proper harvesting age. One $200cm^2$ segment of bark was obtained from each tree at brest height. Physical properties of bark studied are: bark density, moisture content of green bark (inner-, outer-, and total-bark), fiber saturation point, hysteresis loop, shrinkage, water absorption, specific heat, heat of wetting, thermal conductivity, thermal diffusivity, heat of combustion, and differential thermal analysis. The mechanical properties are studied on bending and compression strength (radial, longitudinal, and tangential). The results may be summarized as follows: 1. The oven-dry specific gravities differ between wood and bark, further more even for a given bark sample, the difference is obersved between inner and outer bark. 2. The oven-dry specific gravity of bark is higher than that of wood. This fact is attributed to the anatomical structure whose characters are manifested by higher content of sieve fiber and sclereids. 3. Except Pinus koraiensis, the oven-dry specific gravity of inner bark is higher than that of outer bark, which results from higher shrinkage of inner bark. 4. The moisture content of bark increases with direct proportion to the composition ratio of sieve components and decreases with higher percent of sclerenchyma and periderm tissues. 5. The possibility of determining fiber saturation point is suggested by the measuring the heat of wetting. With the proposed method, the fiber saturation point of Pinus densiflora lies between 26 and 28%, that of Quercus accutissima ranges from 24 to 28%. These results need be further examined by other methods. 6. Contrary to the behavior of wood, the bark shrinkage is the highest in radial direction and the lowest in longitudinal direction. Quercus serrata and Q. variabilis do not fall in this category. 7. Bark shows the same specific heat as wood, but the heat of wetting of bark is higher than that of wood. In heat conductivity, bark is lower than wood. From the measures of oven-dry specific gravity (${\rho}d$) and moisture fraction specific gravity (${\rho}m$) is devised the following regression equation upon which heat conductivity can be calculated. The calculated heat conductivity of bark is between $0.8{\times}10^{-4}$ and $1.6{\times}10^{-4}cal/cm-sec-deg$. $$K=4.631+11.408{\rho}d+7.628{\rho}m$$ 8. The bark heat diffusivity varies from $8.03{\times}10^{-4}$ to $4.46{\times}10^{-4}cm^2/sec$. From differential thermal analysis, wood shows a higher thermogram than bark under ignition point, but the tendency is reversed above ignition point. 9. The modulus of rupture for static bending strength of bark is proportional to the density of bark which in turn gives the following regression equation. M=243.78X-12.02 The compressive strength of bark is the highest in radial direction, contrary to the behavior of wood, and the compressive strength of longitudinal direction follows the tangential one in decreasing order.

  • PDF