• Title/Summary/Keyword: Water pressure ratio

Search Result 714, Processing Time 0.033 seconds

Analytical studies of bovine mastitis management by standard plate counts(SPC) and somatic cell counts(SCC) (젖소 유방염 관리에 따른 세균 및 체세포수 등급 실태 조사 분석)

  • 허정호;정명호;박영호;조명희;이주홍
    • Korean Journal of Veterinary Service
    • /
    • v.21 no.3
    • /
    • pp.285-300
    • /
    • 1998
  • 1. The number of average milking cows, clinical forms of mastitis, mastitis-developing cows, and cows killed by mastitis a year were 25.7, 1.8(7%), 6.3(26%), and 2.7(10.1%)heads, respectively. The annual grade changes of standard plate counts(SPC) and somatic cell counts(SCC) showed the grade 1A of SPC diminished sharply from April to August, we think it was due to the lack of proper management in farming season and the grade 3 of SCC indirectly influenced increased in huge during August. 2. The average number of parturitions of farms was 2.3, but 50% of below 1 parturition were 22 farms(31%), 50% of above 3 parturitions were 16(23%) out of 71 farms. According to grades of the number of parturitions of milking cows per each farm, the farms' grades recording 3 parturitions and 50% were little bit excellent. 3. The actual situation research of foremilking CMT revealed 35 out of 74 farmer didn't do CMT Among them(35 out of 74 farmers), 80% did not test thanks to the troublesome process of the CMT. SCC grade 3, among farms who did foremilking CMT once or twice a month and who did not were 29% and 40% respectively and SPC grade 1A were 55% and 9%, respectively. 4. The research of actual situation on milking management let us know 29 farms(39%) did not do lastmilking, 37 farms(49%) usually did overmilking, and 34 farms(46%) did milking for 4 or 5 minutes. Grades according to average requiring times of milking showed SCC grade 1 of farms milking within 7 minutes was 11% and SPC grade 1A was 34%, on the other side, farms milking more than 7 minutes were 0% in SCC grade 1 and 13% in SPC grade 1A. Grades according to the starting time of milking after rubbing teats showed SPC grade 1A of farms starting milking at about 1 minute and over 2 minutes were 50% and 20%, respectively. 5. The research of actual situation on hygienic milking management uncovered 65 farms(88%) were using one towel which was used in washing teats and udders to wash more than 3 to 4 cows, and 53 farms(72%) were using one dried towel to dry udders not for each cow but for more than 3 to 4 cows after washing. Also, on milking turns disclosed 30 farms(40%) were milking cows in the order of incoming without isolation of a dominant group. According to grades of towels used in washing teats and udders, farms using a towel for each cow were 56% and a towel for over 3 cows were 31% in SPC grade 1A. According to using-or-not grades of dried towels after washing udders, farms using a towel for each cow were 79% and a towel for over 3 cows were 21% in SPC grade 1A. 6. Farms doing teat-dipping before milking were 7(10%), not doing teat-dipping after milking, or doing sometimes were 9(12%), and doing right after milking were 57(77%). And farms doing teat-dipping after dry cows and before delivery were 21(28a ). Farms using bethadine as an antiseptic solution were 70(95%), 40 farms(59%) diluted it with water as weak as 5 to 10 times, and on drying cows 64 farms(87%) slowly did it more than 2 days. Grade 1A of SPC of farms doing teat-dipping at every milking was 38%, farms doing occasionally or not was 33%, and farms doing it right after milking was 37% and doing after milking more than 5 cows was 20%. Grade 1A of SPC among farms diluting bethadine 5 times and diluting 5 to 10 times with water were 36% and 33%, respectively, and Grade 3 of SCC were 35% and 32%, respectively. 7. Studies on nonlactating period medical treatment, as the cows were on dry, 54 farms treated with their own hands.73 farms(98%) had bovine mastitis treated for themselves. And on applying medicines against mastitis, 55 farmers chose them on the basis of their own experience, 42 farms(57%) were treated more than 3 days. 41 farms(55%) dumped away the mastitis infected milk separately, 24 farms(32%) were feeding and milking at the same time. 8. Fifty-six farms(76%) always washed and disinfected milking machines after milking. Farms using the milking machines at low, or variable vacuum pressures, or at the vacuum pressure, set at the moment of its installation were 31(42%), and farms that did not know pulsation ratio were 27(37%). Farms changing liners when they were torn 8(11%), 58 farms(78%) said they checked milking system when there were wrong with them, 31 farms(42%) changed milking hoses when they found out problems, and 42 farms(57%) cleaned vacuum and milking systems when they felt dirty. The SPC grade 1A of farms washing and sterilizing milking machines was 38% and farms only washing was 28%.

  • PDF

Au-Ag-Te Mineralization by Boiling and Dilution of Meteoric Ground-water in the Tongyeong Epithermal sold System, Korea: Implications from Reaction Path Modeling (광화유체의 비등과 희석에 의한 통영 천열수계 Au-Ag-Te 장화작용에 대한 반응경로 모델링)

  • Maeng-Eon Park;Kyu-Youl Sung
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.507-522
    • /
    • 2001
  • At the Tongyeong mine, quartz, rhodochrosite (kutnahorite), muscovite, illite, pyrite, galena, chalcopyrite. sphalerite, acanthite, and hessite are the principal vein minerals. They were deposited under epithermal conditions in two stages. Ore mineral assemblages and associated gangue phases in stage can be clearly divided into two general associations: an early cycle (band) that appeared with introduction of most of the sulfides and electrum, and a later cycle in which base metal and carbonate-bearing assemblages (mostly rhodochrosite) became dominant. Tellurides and some electrum occur as small rounded grains within subhedral-to euhedral pyrite or anhedral galena in stageII. Sulfide mineralization is zoned from pyrite to galena and sphalerite. We have used computer modeling to simulate formation of four stages of vein genesis. The reaction of a single fluid with andesite host rock at 28$0^{\circ}C$, isobaric cooling of a single fluid from 26$0^{\circ}C$ to 12$0^{\circ}C$, and boiling and mixing of a fluid with both decreasing pressure and temperature were studied using the CHILLER program. Calculations show that the precipitation of alteration minerals is due to fluid-andesite interaction as temperature drops. Speciation calculations confirm that the hydrothermal fluids with moderately high salinities and pH 5.7 (acid), were capable of transporting significant quantities of base metals. The abundance of gold in fluid depends critically on the ratio of total base metals and iron to sulfide in the aqueous phase because gold is transported as an Au(HS)$_2$- complex, which is sensitive to sulfide activity. Modeling results for Tongyeong mineralization show strong influence of shallow hydrogenic processes such as boiling and fluid mixing. The variable handing in stageII mineralization is best explained by maltiple boilings of hydrothermal fluid followed by lateral mixing of the fluid with overlying diluted, steam-heated ground water. The degree of similarity of calculated mineral assemblages and observed electrum composition and field relationships shows the utility of the numerical simulation method in identifying chemical processes that accompany boiling and mixing in Te-bearing Au-Ag system. This has been applied in models to narrow the search area for epithermal ores.

  • PDF

Flexural Properties according to Change of Polymerization Temperature of Autopolymerized Resin for Orthodontic (치과 교정용 자가중합형 Resin의 중합 온도 변화에 따른 굽힘 특성)

  • Lee, Gyu Sun
    • Journal of dental hygiene science
    • /
    • v.15 no.3
    • /
    • pp.259-264
    • /
    • 2015
  • For this experiment, specimen was manufactured by injecting polymer and monomer into silicon mold with volume ratio of 2.5:1 based on ISO 20795-2 so that average thickness, width and length of specimen would be maintained as 3.3 mm, 10.0 mm and 65.0 mm, respectively depending on spray on technique. Specimen was divided into 3 groups ($25^{\circ}C$, $40^{\circ}C$, $70^{\circ}C$) depending on polymerization temperature and 10 specimen was manufactured for each group and it was polymerized in water tank of ${\pm}1^{\circ}C$ under the setting condition of polymerization time of 15 minutes and pressure of 3 bar. After keeping specimen in distilled water of $37^{\circ}C$ for over 48 hours before experiment, flexural strength (FS) and elasticity modulus (EM) of specimen being tested by using Intron (3344; Instron; Instron). SPSS ver. 16.0 was used for analysis and post-hoc test of Scheffe was performed after using one-way ANOVA. When comparing mean value of FS of resin for orthodontics, it was represented in the range of 71.500 MPa for $25^{\circ}C$ group, 74.920 MPa for $40^{\circ}C$ group and 76.880 MPa for $70^{\circ}C$ group and difference was shown in the order of $25^{\circ}C$ group <$40^{\circ}C$ group <$70^{\circ}C$ group but such difference was not significant statistically (p=0.052). Result of EM mean value of resin for orthodontics was more polymerization temperature was high, the more was significant difference represented in the order of $25^{\circ}C$ group <$40^{\circ}C$ group <$70^{\circ}C$ group (p<0.039).

Synthesis and Phase Relations of Potassium-Beta-Aluminas in the Ternary System K2O-MgO-Al2O3 (K2O-MgO-Al2O3 3성분계에서 K+-β/β"-Al2O3의 합성 및 상관계)

  • Ham, Choul-Hwan;Lim, Sung-Ki;Lee, Chung-Kee;Yoo, Seung-Eul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1086-1091
    • /
    • 1999
  • $K^+-{\beta}/{\beta}"-Al_2O_3$ in the ternary system $K_2O-MgO-Al_2O_3$ was directly synthesized by solid state reaction. The phase formation and phase relation were carefully investigated in relation to starting composition, calcining temperature and time, and dispersion medium. The optimal synthetic condition was also examined for the formation of ${\beta}"-Al_2O_3$ phase with a maximum fraction. As a composition range, the mole ratio of $K_2O$ to $Al_2O_3$ was changed from 1:5 to 1:6.2 and the amount of MgO used as a stabilizer was varied from 4.2 wt % to 6.3 wt %. The calcining temperature was selected between $1000^{\circ}C$ and $1500^{\circ}C$. At $1000^{\circ}C$, the ${\beta}/{\beta}"-Al_2O_3$ phases began to form resulted from the combining of ${\alpha}-Al_2O_3$ and $KAlO_2$ and increased with temperature rising. All of ${\alpha}-Al_2O_3$ phase disappeared to be homogenized to the ${\beta}/{\beta}"-Al_2O_3$ phase at $1200^{\circ}C$. Near the temperature at $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase showed a maximum value with the composition of $K_{1.67}Mg_{0.67}Al_{10.33}O_{17}$. At temperatures above $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase decreased gradually owing to $K_2O$ loss caused by a high potassium vapor pressure, and the appropriate calcining time was about 5 hours. Acetone was more effective than distilled water as a dispersion medium for milling and mixing.

  • PDF

A New Detailed Assessment for Liquefaction Potential Based on the Liquefaction Driving Effect of the Real Earthquake Motion (실지진하중의 액상화 발생특성에 기초한 액상화 상세평가법)

  • 최재순;강한수;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.145-159
    • /
    • 2004
  • The conventional method for assessment of liquefaction potential proposed by Seed and Idriss has been widely used in most countries because of simplicity of tests. Even though various data such as stress, strain, stress path, and excess pore water pressure can be obtained from the dynamic test, especially, two simple experimental data such as the maximum deviatoric stress and the number of cycles at liquefaction have been used in the conventional assessment. In this study, a new detailed assessment for liquefaction potential to reflect both characteristics of real earthquake motion and dynamic soil resistance is proposed and verified. In the assessment, the safety factor of the liquefaction potential at a given depth of a site can be obtained by the ratio of a resistible cumulative plastic shear strain determined through the performance of the conventional cyclic test and a driving cumulative plastic shear strain calculated from the shear strain time history through the ground response analysis. The last point to cumulate the driving plastic shear strain to initiate soil liquefaction is important for this assessment. From the result of cyclic triaxial test using real earthquake motions, it was concluded that liquefaction under the impact-type earthquake loads would initiate as soon as a peak loading signal was reached. The driving cumulative plastic shear strain, therefore, can be determined by adding all plastic shear strains obtained from the ground response analysis up to the peak point. Through the verification of the proposed assessment, it can be concluded that the proposed assessment for liquefaction potential can be a progressive method to reflect both characteristics of the unique soil resistance and earthquake parameters such as peak earthquake signal, significant duration time, earthquake loading type, and magnitude.

Numerical study for Application of H-Pile Connection Plastic Sheet Pile Retaining Wall (HCS) (H-Pile과 Plastic Sheet Pile을 결합한 토류벽체에 대한 수치해석적 연구)

  • Lee, Kyou-Nam;Lim, Hee-Dae
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.331-343
    • /
    • 2017
  • In this study to improve stability, workability and economics of the H-Pile+Earth plate or H-Pile+Earth plate+Cutoff grouting currently in use, we had developed HCS method belonging to the retaining wall which is consisting of a combination H-Pile, Plastic Sheet Pile and Steel Square Pipe for gap maintenance and reinforcement of flexible plastic Sheet Pile, and the behavior of each member composing HCS method is investigated by three-dimensional finite element analysis. To numerically analyze the behavior of the HCS method, we have performed extensive three-dimentional finite element analysis for three kinds of plastic Sheet Pile size, two kinds of H-Pile size and three kinds of H-Pile installation interval, one kinds of Steel Square Pipe and three kinds of Steel Square Pipe installation interval. After analyzing the numerical results, we found that the combinations of $P.S.P-460{\times}131.5{\times}7t$ (PS7) and H-Pile $250{\times}250{\times}9{\times}14$ (H250), $P.S.P473{\times}133.5{\times}9t$ (PS9) and H-Pile $300{\times}200{\times}9{\times}14$ (H300) is the most economical because these combinations are considered to have a stress ratio (=applied stress/allowable stress) close to that as the stiffness of H-Pile, plastic Sheet Pile and Steel Square Pipe composite increased, the horizontal displacement of the retaining wall and the vertical displacement of the upper ground decreased. Especially, due to the arching effects caused by the difference in stiffness between H-Pile and plastic Sheet Pile, a large part of the earth pressure acting on plastic Sheet Pile caused a stress transfer to H-Pile, and the stress and displacement of plastic Sheet Pile were small. Through this study, we can confirm the behavior of each member constituting the HCS method, and based on the confirmed results of this study, it can be used to apply HCS method in reasonable, stable and economical way in the future.

Influence of Micrometeorological Elements on Evapotranspiration in Rice (Oryza sativa L.) Crop Canopy (포장(圃場)에서 벼 군락(群落)의 미기상(微氣象) 요소(要素)들이 증발산량(蒸發散量)에 미치는 영향(影響))

  • Kim, Jong-Wook;Kang, Byeung-Hoa;Lee, Jeong-Taek;Yun, Seong-Ho;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.231-241
    • /
    • 1992
  • To study the relationships between major micrometeorological elements and their influences on evapotranspiration(ET) in the canopy of two rice cultivars, Daecheongbyo and Samgangbyo, synoptic meteorological factors, micrometeorological elements and ET from the canopy and biomass production were observed at various growth stages in the paddy field of Suwon Weather Forcast Office in 1989. ET from the rice community was highly correlated with the following factors in order of pan evaporation>air temperature>leaf temperature>solar radiation>sunshine duration>difference in vapor pressure depicit(VPD)>water temperature. ET observed showed higher correlation with the evaporation from small pan than that from Class A pan. Varietal difference would be noted in the relationships between ET in Samgangbyo canopy and the evaporations observed from the pans, with which closer a correlation was found in Samgangbyo than in Daecheongbyo. The ratio of canopy ET to the evaporation from Class A pan was maintained over 1.0 through the growth stages with the maximum of 1.9 at the late August. The evaporation observed from Class A pan was amounted to 71.9% of that from small pan. ET was better correlated with solar radiation than with net radiation which reached about 66% of solar radiation. Maximum temperature showed higher correlation with ET than mean air temperature, and also wind speed of 1m above ground revealed positive correlation. The relative humidity, however, had no correlation with the exception of ET in rainy days. A regression model developed to estimate ET as a function of meteorological elements being described with $R^2$ of 0.607 as : $ET=-5.3594+0.7005Pan\;A+0.1926T_{mean}+0.0878_{sol}+0.025RH$.

  • PDF

A Critical Liquefaction Resistible Characteristic of Saturated Sands Based on the Cyclic Triaxial Test Under Sinusoidal Loadings (정현하중재하 진동삼축시험에 기초한 포화사질토의 액상화 한계저항특성)

  • 최재순;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.147-158
    • /
    • 2004
  • Laboratory dynamic tests are carried out to assess the liquefaction potential of saturated sands in most countries. However, simple results such as the maximum cyclic shear stress and the number of cycles at initial liquefaction are used in the experimental assessment of liquefaction potential, even though various results can be obtained from the dynamic test. In addition, it seemed to be inefficient because more than three dynamic tests with different stress ratio have to be carried out to draw a liquefaction resistance experimental curve. To improve the present assessment method fur liquefaction potential, a new critical resistible characteristic far soil liquefaction is proposed and verified through conventional cyclic triaxial tests with Jumunjin sand. In the proposed method, various experimental data such as effective stress path, stress-strain relationship, and the change of excess pore water pressure can be used in the determination of cumulative plastic shear strains at every 1/4 cycle. Especially, the critical cumulative plastic shear strain to initiate liquefaction can be defined in a specific point called a phase change point in the effective stress path and it can be calculated from a hysteric curve of stress-strain relationship up to this point. Through this research, it is found that the proposed cumulative plastic shear strain can express the dissipated energy to resist dynamic loads and consider the realistic soil dynamic behavior of saturated sands reasonably. It is also found that the critical plastic shear strain can be used as a registible index of soils to represent the critical soil dynamic state, because it seems to include no effect of large deformation.

Changes in Volatile Components and Capsaicin of Oleoresin Red Pepper during Cooking (고추 Oleoresin의 가열조리중 휘발성 성분 및 Capsaicin의 변화)

  • 최옥수;하봉석
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.232-237
    • /
    • 1994
  • Changes of volatile components in modified oleoresin red pepper during cooking at high temperature were investigated. Dried red pepper was milled to 100mesh of size particle and oily compounds were extracted by reduced pressure steam distrillation. The rest part was reextracted and concentrated. The extracts were combined. The same volume of water and 4% of polyglycerol condensed ricinoleate (PGDR) were added to the combined extract, and emulsified to make oleoresin red pepper 119 volatile compounds were separated from the dried red pepper and oleoresin and 35 components were identified in both samples. The major flavor compounds were identified to be 2-methoxy-phenol, 2, 6-bis(1, 1-dimethylethyl)-4-methyl-phenol, 1, 4-dimethylbenzene, thylbenzene, 1, 2-benzenedicarboxylic acid, 2-methoxyl-4-methylphenol, 4-ethyl-2-methoxy-phenol, and 5- methyl-2-furancarboxyaldehyde, and their transferal from raw red pepper to oleresin was low. 93 voltilie compounds were isolated after 3 hours cooking at 100 and 82 volitile compounds were separated after that at $150^{\circ}C$. Degeneration of volatile compounds was peculiarly proportional to the temperature of cooling. Capsaicin was relatively stable during cooking and remaining ratio after cooking at 100 and $150^{\circ}C$ was 84.7% and 73.3%. respectively. Oleoresin from red pepper had a little antioxidation effect at $100^{\circ}C$ cooking, but, antioxidation effect at $150^{\circ}C$ cooking was not shown due to degradation of capsaicin.

  • PDF

Extraction Characteristics of Flavonoids from Lonicera flos by Supercritical Fluid Carbon Dioxide ($SF-CO_2$) with Co-solvent (초임계유체 $CO_2$ 및 Co-solvent 첨가에 따른 금은화(Lonicera fles)의 Flavonoid류 추출특성)

  • Suh, Sang-Chul;Cho, Sung-Gill;Hong, Joo-Heon;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.183-188
    • /
    • 2005
  • Effects of co-solvent polarity, citric acid, pressure, temperature, run time, and co-solvent ratio on extraction of major flavonoids from Lonicera Flos were investigated using supercritical fluid $CO_{2}(SF-CO_{2})$. HPLC analysis revealed addition of pure methanol resulted in low extraction yield of major flavonoids, luteoloin (Lu), Quercetin (Qu), Apigenin (Ap). Under same condition, as co-solvent polarity increased, yields of major flavonoids increased gradually, At optimum co-solvent extraction condirion of 60% aqueous methanol (10%, v/v), yields of Lu, Qu, and Ap were 42.09, 28.18, and 3.49 mg/100 g, respectively. Addition of citric acid to 60% aqueous methanol gave higher, with addition of 1% citrie acid resulting in highest yields of 63.2 (Lu), 39.35 (Qu), and 5.79 (Ap) mg/100 g. Optimum extraction conditions of major flavonoids were 200 bar, $50^{\circ}C$, 60 min, and $CO_{2}$-methanol-water(20: 1.8: 1.2).