• 제목/요약/키워드: Water pipes

Search Result 701, Processing Time 0.029 seconds

Corrosion control of drinking water pipes by corrosion inhibitor (부식억제제에 의한 상수도관의 부식제어)

  • Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2306-2310
    • /
    • 2010
  • Corrosion is a complex series of oxidation/reduction reactions between at the water-metal surfaces and materials in which the water is stored or transported. With respect to the corrosion potential of drinking water, the primary concerns include the potential presence of toxic metals, such as lead and copper; deterioration and damage to the household plumbing, and aesthetic problems such as stained laundry, and bitter taste. This study was performed to evaluate the effects of corrosion inhibitors on corrosion rates, Fe and Cu release concentration in water distribution pipes. Decrease of corrosion rates were strongly related to phosphate corrosion inhibitors. Considering that typical corrosion processes consists of a series of electrochemical reaction at the metal surface in contact with water, corrosion rates were positively correlated with Fe release.

Corrosion behavior of coated steel pipes for water works with water content of soil (토양의 함수율에 빠른 상수도용 도복장 강관의 부식거동에 관한 연구)

  • Park, Kyung-Wha;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Ha, Yoon-Cheol;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.227-229
    • /
    • 2004
  • The corrosion rate of buried steel pipes for water works was investigated under soil environment. Steel pipe shows various characteristics caused by complicated environment condition of underground and especially the corrosion rate of it depends on the resistivity of soil controlled by content of water. In this paper, the corrosion behavior of steel pipe was observed by polarization test under soil and the silica sand in the water content range of 0-50%. Generally it is well known that the resistivity of soil decreased rapidly over 15% water content. In fact the corrosion rate, corrosion potential, and corrosion consumption (MPY) of steel pipe were shown very different aspects within 20% water content.

  • PDF

Dehumidification and Evaporative Cooling Efficiency by Water Pipes in Greenhouse (냉수파이프에 의한 온실의 제습 및 증발냉각효율)

  • 김문기;남상운;윤남규
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.237-245
    • /
    • 1998
  • Greenhouse crop production under critical summer climate In Korea has considerable difficulties because of high temperature and relative humidity. In this study, some water pipes were tested as a means of the dehumidification and increment of evaporative cooling efficiency. As a result of heat transfer characteristic analysis, overall heat transfer coefficient of copper pipe was larger than steel pipe, and estimated values were smaller than measured values. The condensed quantities of vapor were not significantly different between copper pipe and steel pipe, however dehumidifying effect by the water pipes was significantly large. It was estimated based on the results that the evaporative cooling system by the water pipe will be able to increase the evaporative cooling efficiency of about 48%, and decrease the temperature of about 1.3$^{\circ}C$.

  • PDF

The Foul Smelling from Sewer Pipe near Large Apartment Complexes and its Countermeasures I: Characteristics of the Foul-Smelling Sewer Pipe in Residential Areas (대규모 아파트 단지주변 하수관로의 악취 발생과 대책 1: 주거지역 하수관로의 악취 발생 특성)

  • Lee, Jang-Hown;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.621-629
    • /
    • 2007
  • This study intends to investigate the characteristics of the foul smell of sewer pipes near large apartment complexes as complaints about offensive odors have drastically increased in urban residential areas. Targeting apartments where people actually complained about foul orders, the study result revealed that components in the smell of the water-purifier tank of the target apartment were very similar to those of sewage treatment plants and night soil treatment plants. Measuring components of odors inside the management layer of tank showed that the concentration of hydrogen sulfide was 10ppm, which is approximately 160 times the safety standard of 0.06ppm; the concentration of mercaptan was 0.9ppm, which is about 220 times the safety standard of 0.004ppm. The source materials of foul odors were discharged outside through ducts, and those households living near outlets producing bad smell complain that it gets worse depending on the air pressure or wind direction and strength, and they could not even open windows. As well, these source materials were transferred by discharge pumps to public sewer pipes outside the apartment complex. While discharge pumps starts operating, they remain on the sewer pipe and then begin to spread over to roads through small openings of manholes on the road. Then, the smell offends passers-by and residents near the road, leading to a lot of complaints. The study results suggest that, among the sources of foul odors in sewer pipes of residential areas, especially those from the water-purifier tank of large apartments, hydrogen sulfide should be the main target for follow-up treatment.

Conservative Adjustment of the Standard Calculation Method of Inflow Water Into a Separated Sewer System (분류식 하수관로에서 유입수 표준매뉴얼 산정방법의 보수적 수정 결과)

  • Chu, Minkyeong;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.423-430
    • /
    • 2020
  • To improve the low treatment efficiency of sewage treatment plants, the separated sewer system must be maintained to provide an adequate flow rate and quality of the sewage under the effect of inflow. In this study, data from five locations of Namsuk, Dukgok1, Dukgok2, Kanggu, and Opo were used to conservatively calculate the inflow water volume. The sewer flow and rainfall data were collected in 2017. The factors in the standard method used to calculate the inflow of the combined sewer pipes including "rainy days", "rainfall impact period", and "period for basal sewer" were defined as 3 mm/day, continuous rain for two days, and two weeks prior to the inflow generation, respectively. "Rainy days", "rainfall impact period", and "period for basal sewer" were conservatively adjusted to 5 mm/day, continuous rain for five days, and three weeks prior to the inflow generation, respectively. As a results of the adjustment, the linearity (r2) was improved except for in Dukgok1. This implies that the conservative adjustment made in this study could improve the management quality of sewer pipes. Also, the linear correlation coefficient (ai) between inflow and rainfall showed a large difference between the target locations, which can be another monitoring factor affecting the quality of sewer pipes. To improve the correlation based on the individual characteristics of the locations in Korea, the automatic algorithm for the inflow calculation should be developed by innovative intellectual technologies for application to the entire national area.

Development of a PC-Based Water Supply Facilities Information System (개인용 컴퓨터를 이용한 상수도 시설물 관리 정보체계 개발)

  • 황국웅;이규석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.2
    • /
    • pp.187-197
    • /
    • 1994
  • The purpose of this study is to develop a PC-based water supply facilities information system. This system will be a major stepping-stone for developing Geographic Information Systems(GIS) in Korea, which is constructed by integrating the technologies related to Automated Mapping(AM) systems and Facilities Management(FM) system. And the results of this study are as follows: (1) After the user needs assessment, it was decided that information management of the water supply facilities including distribution pipes, valves, and leaking management are the most urgent tasks. So, the system was developed focusing on these tasks. (2) After the system design and development, the water supply facilities information system consists of graphic database management system, attribute database management system, internal interface that links graphic data and attribute data, and graphic user interface for user-friendliness. (3) The graphic data and the attribute data including distribution pipes, leading-pipes, valves, and parcels at the study area, Non-Hyun Dong Kang-Nam Gu in Seoul, were used in this system, and the water supply facilities database was established. It was applied to test these facilities, and proved that the system developed in this study is efficient to manage information within the scope of this study. (4) The function using the parcel identification number was efficient to locate the address concerned.

  • PDF

Isolating Subsystems by Valves in a Water Distribution System and Evaluating the System Performance (상수관망에서의 밸브에 의한 관의 부분적 격리와 상수관망의 효율성 평가)

  • Jun, Hwan-Don
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.585-593
    • /
    • 2005
  • Recent concerns regarding protecting, identifying, isolating, redundant routing and dewatering of subsystems of water distribution networks have led to the realization of the importance of valves in these systems. Valves serve two purposes namely, flow and pressure control and isolating subsystems due to breakage or contaminant containment. In this paper, valves are considered from the point of view of subsystem isolation. When a water main is required to be closed, it may be in general necessary to close several other pipes in addition to the broken pipe itself depending on the distribution of adjacent valves. This set of pipes is defined as a segment. In this paper a segment analysis for isolating pipes is present and based on the segment analysis, we suggested the Valve Importance Index and the 7 performance indicators to evaluate the system performance. The suggested methodology is applied to a real network to verify the applicability of the methodology.

Modeling of Rate-of-Occurrence-of-Failure According to the Failure Data Type of Water Distribution Cast Iron Pipes and Estimation of Optimal Replacement Time Using the Modified Time Scale (상수도 주철 배수관로의 파손자료 유형에 따른 파손율 모형화와 수정된 시간척도를 이용한 최적교체시기의 산정)

  • Park, Su-Wan;Jun, Hwan-Don;Kim, Jung-Wook
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.39-50
    • /
    • 2007
  • This paper presents applications of the log-linear ROCOF(rate-of-occurrence-of-failure) and the Weibull ROCOF to model the failure rate of individual cast iron pipes in a water distribution system and provides a method of estimating the economically optimal replacement time of the pipes using the 'modified time-scale'. The performance of the two ROCOFs is examined using the maximized log-likelihood estimates of the ROCOFs for the two types of failure data: 'failure-time data' and 'failure-number data'. The optimal replacement time equations for the two models are developed by applying the 'modified time-scale' to ensure the numerical convergence of the estimated values of the model parameters. The methodology is applied to the case study water distribution cast iron pipes and it is found that the log-linear ROCOF has better modeling capability than the Weibull ROCOF when the 'failure-time data' is used. Furthermore, the 'failure-time data' is determined to be more appropriate for both ROCOFs compared to the 'failure-number data' in terms of the ROCOF modeling performances for the water mains under study, implying that recording each failure time results in better modeling of the failure rate than recording failure numbers in some time intervals.