• 제목/요약/키워드: Water permeation layer

검색결과 73건 처리시간 0.021초

Preparation and characterization of TiO2 membrane on porous 316 L stainless steel substrate with high mechanical strength

  • Mohamadi, Fatemeh;Parvin, Nader
    • Membrane and Water Treatment
    • /
    • 제6권3호
    • /
    • pp.251-262
    • /
    • 2015
  • In this work the preparation and characterization of a membrane containing a uniform mesoporous Titanium oxide top layer on a porous stainless steel substrate has been studied. The 316 L stainless steel substrate was prepared by powder metallurgy technique and modified by soaking-rolling and fast drying method. The mesoporous titania membrane was fabricated via the sol-gel method. Morphological studies were performed on both supported and unsupported membranes using scanning electron microscope (SEM) and field emission scanning microscope (FESEM). The membranes were also characterized using X-ray diffraction (XRD) and $N_2$-adsorption / desorption measurement (BET analyses). It was revealed that a defect-free anatase membrane with a thickness of $1.6{\mu}m$ and 4.3 nm average pore size can be produced. In order to evaluate the performance of the supported membrane, single-gas permeation experiments were carried out at room temperature with nitrogen gas. The permeability coefficient of the fabricated membrane was $4{\times}10^{-8}\;lit\;s^{-1}\;Pa^{-1}\;cm^{-1}$.

Synthesis and characterization of polyamide membrane for the separation of acetic acid from water using RO process

  • Mirfarah, Hesam;Mousavi, Seyyed Abbas;Mortazavi, Seyyed Sajjad;Sadeghi, Masoud;Bastani, Dariush
    • Membrane and Water Treatment
    • /
    • 제8권4호
    • /
    • pp.323-336
    • /
    • 2017
  • The main challenge in many applications of acetic acid is acid dehydration and its recovery from wastewater streams. Therefore, the performance of polyamide thin film composite is evaluated to separate acetic acid from water. To reach this goal, the formation of polyamide layer on polysulfone support membrane was investigated via interfacial polymerization (IP) of meta-phenylenediamine (MPD) in water with trimesoyl chloride (TMC) in hexane. Also, the effect of synthesis conditions, such as concentration of monomers and curing temperature on separation of acetic acid from water were investigated by reverse osmosis process. Moreover, the separation mechanism was discussed. The solute permeation was carried out under applied pressure of 5 bar at $25^{\circ}C$. Surface properties of TFC membrane were characterized by ATR-FTIR, SEM and AFM. The performance test indicated that 3.5 wt% of MPD, 0.35 wt% of TMC and curing temperature of $75^{\circ}C$ are the optimum conditions. Moreover, the permeate flux was $4.3{\frac{L}{m^2\;h}}$ and acetic acid rejection was about 43% at these conditions.

다층 구조의 Hybrid flexible 박막 기술 연구 (Hybrid Passivation for a Flexible Organic Light Emitting Diode)

  • 이휘원;김영환;서대식;김영훈;문대규;한정인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.269-270
    • /
    • 2005
  • A hybrid passivation method using parylene and silicon dioxide combination layer for a flexible organic light emitting diode (FOLED) was applied on a polycarbonate substrate. A parylene coating by vapor polymerization method is a highly effective passivation process for the FOLED, and it applies all top surface and the edges of the FOLED device. In order to minimize the permeation of moisture and oxygen from the top surface of the device, an additional layer of silicon dioxide was deposited over the parylene coated layer. It was found that the water vapor transmittance rate (WVTR) of parylene (15 m-in-thickness) / SiO2 (0.3$\mu$m-in-thickness) combination layers deposited on polycarbonate film was decreased under the value of 10-3 g/m2day. The FOLED with the hybrid passivation showed remarkably longer lifetime characteristics in the ambient conditions than the non-passivated FOLED. The lifetime of the passivated FOLED was 400 hours and it was more than ten times over the lifetime of the convectional non-passivated FOLED.

  • PDF

PEBAX/PVDF 복합막 제조 및 투과증발을 통한 에탄올/물 분리 연구 (Preparation of PEBAX/PVDF Composite Membrane and Separaration of Ethanol/Water Mixtures by Pervaporation)

  • 정예원;나해은;조세욱;손민영
    • 멤브레인
    • /
    • 제33권6호
    • /
    • pp.377-382
    • /
    • 2023
  • 본 연구는 PEBAX/PVDF 복합막을 제조하고 에탄올/물 혼합액에 대한 투과증발 성능을 평가하였다. 또한 PVDF 지지체 표면에 ZIF-8 층을 형성하여 복합막의 투과증발 성능을 향상시키고자 하였고, PEBAX 선택층 두께에 따른 성능 비교를 통해 최적의 막을 선정하였다. 제작된 복합막을 물과 에탄올이 95/5 중량비로 혼합된 공급액에 대하여 투과증발 실험을 수행하였다. 그 결과 ZIF-8 충이 형성된 PVDF 지지체를 사용한 복합막의 경우 플럭스 1.98 kg/m2h, 분리 계수 3.88로 일반 PVDF 지지체를 사용한 복합막보다 투과량과 선택도가 모두 높은 값을 나타내었다.

원자층 증착방법에 의한 Al2O3 박막의 OLED Thin Film Encapsulation에 관한 연구 (Study on the OLED Thin Film Encapsulation of the Al2O3 Thin Layer Formed by Atomic Layer Deposition Method)

  • 김기락;조의식;권상직
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.67-70
    • /
    • 2022
  • In order to prevent water vapor and oxygen permeation in the organic light emitting diodes (OLED), Al2O3 thin-film encapsulation (TFE) technology were investigated. Atomic layer deposition (ALD) method was used for making the Al2O3 TFE layer because it has superior barrier performance with advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the thickness of the Al2O3 layer was varied by controlling the numbers of the unit pulse cycle including Tri Methyl Aluminum(Al(CH3)3) injection, Ar purge, and H2O injection. In this case, several process parameters such as injection pulse times, Ar flow rate, precursor temperature, and substrate temperatures were fixed for analysis of the effect only on the thickness of the Al2O3 layer. As results, at least the thickness of 39 nm was required in order to obtain the minimum WVTR of 9.04 mg/m2day per one Al2O3 layer and a good transmittance of 90.94 % at 550 nm wavelength.

계면활성제 유발 건성피부의 기저층, 피지선에 대한 Chamomile, Thyme essential oil의 유효성 연구 (A Study on Efficiency of Chamomile and Thyme Essential Oil About the Basal Layer & Sebaceous Gland in Dry-skin Induced by Surfactant)

  • 장명옥;최정숙
    • 한국패션뷰티학회지
    • /
    • 제3권2호
    • /
    • pp.12-17
    • /
    • 2005
  • Efficiency study of chamomile and Thyme essential oil about the basal layer & sebaceous gland in dry-skin induced by surfactant is as following : 1. Formal observation of outer skin layer and basal layer There was refreshing effects about Surfactant induction skin inflammation in Chamomile, Thyme essential oil processing group but effect in surface layer appeared by higher thing in Chamomile essential oil and it could know that thing which do not use Thyme essential oil in case Thyme essential oil is ultraviolet rays allergy at skin care because Melanocyte appear on the surface is bigger than Chamomile essential oil that it was usefully reaction in basal layer. 2. Formal observation result of sebaceous glands. There are few damages in all group but there is recuperative through excessive water damage by excessive a sebaceous gland made of mulberry bark secretion because Thyme essential oil application group cause chapped skin phenomenon after surface-active agent processing but is seen that difference does not exist greatly and Thyme essential oil that general skin is strong in permeation is effective, but Surfactant induction skin inflammation estimates that Chamomile essential oil is effective. Therefore, it was considered that use of Chamomile essential oil is effectiveness than Thyme essential oil by essential oil used for recovery after damage of inflammation etc..

  • PDF

가교된 폴리비닐알콜 복합막을 이용한 불화에탄올/물 혼합용액의 투과증발분리 특성 (Pervaporation Separation of fluoroethanol/water Mixtures through Crosslinked Poly(vinyl alcohol) Composite Membranes)

  • 이수복;안상만;장봉준;김정훈;이용택
    • 멤브레인
    • /
    • 제14권2호
    • /
    • pp.166-172
    • /
    • 2004
  • 본 연구는 에스텔화 막반응공정에 의한 2,2,2-trifluoroethyl metacrylate (TFEMA)의 생산을 위한 선행연구로, 가교된 poly(vinyl alcohol) 복합막을 이용하여 TFEA (2,2,2-trifluoroethanol)/water 혼합용액을 대상으로 투과증발 특성을 연구하였다 복합막은 다공성 polyethersulfone (PES) 지지체 위에 PVA와 glutaraldehyde (GA)를 같이 녹인 수용액을 코팅한 후 산 촉매 하에서 열가교시킴으로써 제조하였다. SEM (scanning electron microscopy)을 통하여 선택층의 두께는 2-3 $\mu\textrm{m}$로 확인되었고, 제조한 PVA 코팅층의 수평윤도는 가교제의 농도가 증가함에 따라 감소하는 경향을 보였다. 투과증발 실험결과 가교제의 농도가 증가할수록, 투과도는 감소하고 TFEA/water의 선택도는 증가하는 경향을 보였다. 그리고 85-95wt%의 TFEA 혼합용액의 전범위에서 운전온도가 증가할수록 투과도는 증가하였지만, 선택도는 90 wt% TFEA 농도 이하에서는 감소하는 경향을 보인 반면, 95 wt%에서는 증가하는 흥미로운 경향을 보였다. 0.1 moi GA로 가교된 PVA 복합막은 운전온도 8$0^{\circ}C$, 90 wt% TFEA 농도에서 1.5 kg/$m^2$hr의 매우 높은 투과도와 320의 선택도를 보였으며, 따라서 TFEA의 에스텔화 막반응공정에 적용 가능성을 보여주었다.

유/무기 복합 박막을 이용한 유기발광 소자의 보호층에 관한 연구 (Study on the Hybrid Passivation layer of OLEDs using the Organic/Inorganic Thin Film)

  • 배성진;이주원;이영훈;강남수;김동영;황성우;김재경;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 학술대회 및 기술세미나 논문집 디스플레이 광소자
    • /
    • pp.78-80
    • /
    • 2006
  • The hybrid thin-film (HTF) passivation layer composed of the Ultra Violet (UV) curable acrylate layer and MS-31 (MgO:$SiO_2$=3:1wt%) layer was adopted in organic light emitting device (OLEO) to protect organic light emitting materials from penetrations of oxygen and water vapors. The results showed that the HTF layer possessed a very low WVTR value of lower than $0.007gm/m^{2+}day$ at $37.8^{\circ}C$ and 100% RH. This value was within the limited range of the sensitivity of WVTR measurements. And the lifetime of the HTF passivated device became almost three times longer than that of the bare device. The HTF on the OLEO was found to be very effective in protect what from the penetrations of oxygen and moisture.

  • PDF

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF

Al2O3 High Dense Single Layer Gas Barrier by Neutral Beam Assisted Sputtering (NBAS) Process

  • 장윤성;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.157-157
    • /
    • 2015
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}g/m^2day$. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2day$) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study NBAS process was introduced to deposit enhanced film density single gas barrier layer with a low WVTR. Fig. 1. shows a schematic illustration of the NBAS apparatus. The NBAS process was used for the $Al_2O_3$ nano-crystal structure films deposition, as shown in Fig. 1. The NBAS system is based on the conventional RF magnetron sputtering and it has the electron cyclotron resonance (ECR) plasma source and metal reflector. $Ar^+$ ion in the ECR plasma can be accelerated into the plasma sheath between the plasma and metal reflector, which are then neutralized mainly by Auger neutralization. The neutral beam energy is controlled by the metal reflector bias. The controllable neutral beam energy can continuously change crystalline structures from an amorphous phase to nanocrystal phase of various grain sizes. The $Al_2O_3$ films can be high film density by controllable Auger neutral beam energy. we developed $Al_2O_3$ high dense barrier layer using NBAS process. We can verified that NBAS process effect can lead to formation of high density nano-crystal structure barrier layer. As a result, Fig. 2. shows that the NBAS processed $Al_2O_3$ high dense barrier layer shows excellent WVTR property as a under $2{\times}10^{-5}g/m^2day$ in the single barrier layer of 100nm thickness. Therefore, the NBAS processed $Al_2O_3$ high dense barrier layer is very suitable in the high efficiency OLED application.

  • PDF