• Title/Summary/Keyword: Water modeling

Search Result 2,355, Processing Time 0.028 seconds

Spatial Point Pattern Analysis of Riparian Tree Distribution After the 2020 Summer Extreme Flood in the Seomjin River (2020년 여름 섬진강 대홍수 이후 하천 수목 분포에 대한 공간 점 패턴 분석)

  • Lee, Keonhak;Cho, Eunsuk;Cho, Jonghun;Lee, Cheolho;Kim, Hwirae;Baek, Donghae;Kim, Won;Cho, Kang-Hyun;Kim, Daehyun
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.2
    • /
    • pp.83-92
    • /
    • 2022
  • The 2020 summer extreme flood severely disturbed the riparian ecosystem of the Seomjin River. Some trees were killed by the flood impact, whereas others have recovered through epicormic regeneration after the disturbance. At the same time, several tree individuals newly germinated. This research aimed to explain the recovery of the riparian ecosystem by spatial proximity between each tree individual of different characteristics, such as "dead", "recovered", and "newly germinated". A spatial point pattern analysis based on K and g-functions revealed that the newly germinated trees and the existing trees were distributed in the spatially clumping patterns. However, further detailed analysis revealed that the new trees were statistically less attracted to the recovered trees than the dead trees, implying competitive interactions hidden in the facilitative interactions. Habitat amelioration by the existing trees positively affected the growth of the new trees, while "living" existing trees were competing with the new trees for resources. This research is expected to provide new knowledge in this era of rapid climate change, which likely induces stronger and more frequent natural disturbance than before. Environmental factors have been widely used for ecosystem modeling, but species interactions, represented by the relative spatial distribution of plant individuals, are also valuable factors explaining ecosystem dynamics.

Numerical study on the foam spraying for AFDSS applicable to initial fire suppression in large underground spaces (지하대공간 초동 화재진압에 적용가능한 자율형 소화체계의 폼 분사 해석 기법 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.503-516
    • /
    • 2021
  • Autonomous fire detection and suppression system requires advanced technology for complex detection technology and injection/control technology for accurate hitting by fire location. Also, foam spraying should be included to respond to oil fires. However, when a single spray monitor is used in common, water and foam spray properties appear different, so for accurate fire suppression, research on the spray trajectory and distance will be required. In this study, experimental studies and numerical analysis studies were combined to analyze the foam spray characteristics through the spray monitor developed for the establishment of an autonomous fire extinguishing system. For flow analysis of foam injection, modeling was performed using OpenFOAM analysis software, and the commonly used foaming agent (Aqueous Film-Forming Foam) was applied for foam properties. The injection distance analysis was performed according to the injection pressure and the injection angle according to the form of the foam, and at the same time, the results were verified and presented through the injection experiment.

Qualitative Verification of the LAMP Hail Prediction Using Surface and Radar Data (지상과 레이더 자료를 이용한 LAMP 우박 예측 성능의 정성적 검증)

  • Lee, Jae-yong;Lee, Seung-Jae;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.179-189
    • /
    • 2022
  • Ice and water droplets rise and fall above the freezing altitude under the effects of strong updrafts and downdrafts, grow into hail, and then fall to the ground in the form of balls or irregular lumps of ice. Although such hail, which occurs in a local area within a short period of time, causes great damage to the agricultural and forestry sector, there is a paucity of domestic research toward predicting hail. The objective of this study was to introduce Land-Atmosphere Modeling Package (LAMP) hail prediction and measure its performance for 50 hail events that occurred from January 2020 to July 2021. In the study period, the frequency of occurrence was high during the spring and during afternoon hours. The average duration of hail was 15 min, and the average diameter of the hail was 1 cm. The results showed that LAMP predicted hail events with a detection rate of 70%. The hail prediction performance of LAMP deteriorated as the hail prediction time increased. The radar reflectivity of actual cases of hail indicated that the average maximum reflectivity was greater than 40 dBZ regardless of altitude. Approximately 50% of the hail events occurred when the reflectivity ranged from 30~50 dBZ. These results can be used to improve the hail prediction performance of LAMP in the future. Improved hail prediction performance through LAMP should lead to reduced economic losses caused by hail in the agricultural and forestry sector through preemptive measures such as net coverings.

Variation of Earth Pressure Acting on Cut-and-Cover Tunnel Lining with Settlement of Backfill (되메움토의 침하에 따른 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista F.E.;Park Lee-Keun;Im Jong-Chul;Lee Young-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.27-40
    • /
    • 2006
  • Damage of cut-and-cover tunnel lining can be attributed to physical and mechanical factors. Physical factors include material property, reinforcement corrosion, etc. while mechanical factors include underground water pressure, vehicle loads, etc. This study is limited to the modeling of rigid circular cut and cover tunnel constructed at a depth of $1.0{\sim}1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. In this study, only damages due to mechanical factors in the form of additional loads were considered. Among the different types of additional, excessive earth pressure acting on the cut-and-cover tunnel lining is considered as one of the major factors that induce deformation and damage of tunnels after the construction is completed. Excessive earth pressure may be attributed to insufficient compaction, consolidation due to self-weight of backfill soil, precipitation and vibration caused by traffic. Laboratory tunnel model tests were performed in order to determine the earth pressure acting on the tunnel lining and to investigate the applicability of existing earth pressure formulas. Based on the difference in the monitored and computed earth pressure, a factor of safety was recommended. Soil deformation mechanism around the tunnel was also presented using the picture analysis method.

Evaluation and Weathering Depth Modeling of Thermally Altered Pelitic Rocks based on Chemical Weathering and Variations: Ulju Cheonjeon-ri Petroglyph (화학적 풍화작용과 조성변화에 따른 열변질 이질암의 풍화심도 모델링 및 평가: 울주 천전리 각석)

  • LEE Chan Hee;CHUN Yu Gun
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.160-189
    • /
    • 2023
  • The Cheonjeon-ri petroglyph is inscribed with shale formation belonging to the Daegu Formation of the Gyeongsang Supergroup in the Cretaceous of the Mesozoic Era. This rock undergoes thermal alteration to become hornfels, and has a high hardness and dense texture. Rock-forming minerals have almost the same composition as quartz, alkali felspar, plagioclase, calcite, mica, chlorite and opaque minerals, but calcite is rarely detected in the weathered zone. The petroglyph forms a weathered zone with a certain depth, and there is a difference in mineral and chemical composition between weathered and unweathered zones, respectively. The CaO contents of the weathered zone were reduced by more than 90% compared to that of the unweathered zone, because calcite reacted with water and dissolved. As a result of calculating the surface weathering depth for the petroglyph with the transmission characteristics of X-rays, depth of the parts in falling off and exfoliation showed a depth of about 0.5 to 1 mm, but the weathering depth in most areas was calculated to be about 3 to 4 mm. This can be proved by the contents and changes of Ca and Sr. The surface discolorations of the petroglyph are distributed with different color density, and the yellowish brown discoloration is alternated with a thin biofilm layer, showing a coverage of 79.6%. Therefore, periodic preservation managements and preventive conservation monitoring that can effectively control the physicochemical and biological damages of the Cheonjeonri petroglyph will be necessary.

Making Aids of Magnetic Resonacnce Image Susing 3D Printing Technology (3D 프린트를 활용한 자기공명영상검사 보조기구 제작)

  • Choi, Woo jeon;Ye, Soo young;Kim, Dong hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.403-409
    • /
    • 2016
  • MRI scan is a useful method in the diagnosis of musculoskeletal excellent contrast of the organization. Depending on the patient's musculoskeletal examinations state the type of aids provided the aid is used there is also challenging as well as the costs do not vary. This study was produced by the use of 3D printing technology, an MRI aids. Aids in the production process, then through 3D modeling and then convert stl files using (3D MAX.2014, Fusion360) slicing programs (Cubicreater 2.1ver., Cura 15.4ver) converted to G-code printed on the FDM scheme (Cubicon Style, output was MICRO MAKE). Output is, but in the FDM to evaluate the SNR on the MRI images were compared to the test is the case before use, and then to produce a Water Phantom case of a PLA, ABS, a TPU thickness 3mm, using aids before, It was evaluated in a clinical image after qualitatively. Obtaining an image of SNR Warter Phantom appeared to have been evaluated as T1 NON $123.778{\pm}28.492$, PLA $123.522{\pm}28.373$, ABS $124.461{\pm}25.716$, TPU $124.843{\pm}27.272$. T2 NON $127.421{\pm}26.949$, was rated as PLA $124.501{\pm}27.768$, ABS $128.663{\pm}26.549$, TPU $130.171{\pm}25.998$. The results did not show statistically significant differences. The use of assistive devices before and after images Clinical evaluation method palliative $3.20{\pm}0.88$, $3.95{\pm}0.76$ after using the aids used to aid improved the quality of the image. Production of the auxiliary mechanism using a future 3D printing is expected are thought to be used clinically, it can be an aid making safe and comfortable than the inspection of the patient is an alternative to improve the problems of the aids used in the conventional do.

Analysis of a Groundwater Flow System in Fractured Rock Mass Using the Concept of Hydraulic Compartment (수리영역 개념을 적용한 단열암반의 지하수유동체계 해석)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.69-83
    • /
    • 2006
  • This study aims to evaluate a complex groundwater flow system around the underground oil storage caverns using the concept of hydraulic compartment. For the hydrogeological analysis, the hydraulic testing data, the evolution of groundwater levels in 28 surface monitoring boreholes and pressure variation of 95 horizontal and 63 vertical water curtain holes in the caverns were utilized. At the cavern level, the Hydraulic Conductor Domains(fracture zones) are characterized one local major fracture zone(NE-1)and two local fracture zones between the FZ-1 and FZ-2 fracture zones. The Hydraulic Rock Domain(rock mass) is divided into four compartments by the above local fracture zones. Two Hydraulic Rock Domains(A, B) around the FZ-2 zone have a relatively high initial groundwater pressures up to $15kg/cm^2$ and the differences between the upper and lower groundwater levels, measured from the monitoring holes equipped with double completion, are in the range of 10 and 40 m throughout the construction stage, indicating relatively good hydraulic connection between the near surface and bedrock groundwater systems. On the other hand, two Hydraulic Rock Domains(C, D) adjacent to the FZ-1, the groundwater levels in the upper and lower zones are shown a great difference in the maximum of 120 m and the high water levels in the upper groundwater system were not varied during the construction stage. This might be resulted from the very low hydraulic conductivity$(7.2X10^{-10}m/sec)$ in the zone, six times lower than that of Domain C, D. Groundwater recharge rates obtained from the numerical modeling are 2% of the annual mean precipitation(1,356mm/year) for 20 years.

DISEASE DIAGNOSED AND DESCRIBED BY NIRS

  • Tsenkova, Roumiana N.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1031-1031
    • /
    • 2001
  • The mammary gland is made up of remarkably sensitive tissue, which has the capability of producing a large volume of secretion, milk, under normal or healthy conditions. When bacteria enter the gland and establish an infection (mastitis), inflammation is initiated accompanied by an influx of white cells from the blood stream, by altered secretory function, and changes in the volume and composition of secretion. Cell numbers in milk are closely associated with inflammation and udder health. These somatic cell counts (SCC) are accepted as the international standard measurement of milk quality in dairy and for mastitis diagnosis. NIR Spectra of unhomogenized composite milk samples from 14 cows (healthy and mastitic), 7days after parturition and during the next 30 days of lactation were measured. Different multivariate analysis techniques were used to diagnose the disease at very early stage and determine how the spectral properties of milk vary with its composition and animal health. PLS model for prediction of somatic cell count (SCC) based on NIR milk spectra was made. The best accuracy of determination for the 1100-2500nm range was found using smoothed absorbance data and 10 PLS factors. The standard error of prediction for independent validation set of samples was 0.382, correlation coefficient 0.854 and the variation coefficient 7.63%. It has been found that SCC determination by NIR milk spectra was indirect and based on the related changes in milk composition. From the spectral changes, we learned that when mastitis occurred, the most significant factors that simultaneously influenced milk spectra were alteration of milk proteins and changes in ionic concentration of milk. It was consistent with the results we obtained further when applied 2DCOS. Two-dimensional correlation analysis of NIR milk spectra was done to assess the changes in milk composition, which occur when somatic cell count (SCC) levels vary. The synchronous correlation map revealed that when SCC increases, protein levels increase while water and lactose levels decrease. Results from the analysis of the asynchronous plot indicated that changes in water and fat absorptions occur before other milk components. In addition, the technique was used to assess the changes in milk during a period when SCC levels do not vary appreciably. Results indicated that milk components are in equilibrium and no appreciable change in a given component was seen with respect to another. This was found in both healthy and mastitic animals. However, milk components were found to vary with SCC content regardless of the range considered. This important finding demonstrates that 2-D correlation analysis may be used to track even subtle changes in milk composition in individual cows. To find out the right threshold for SCC when used for mastitis diagnosis at cow level, classification of milk samples was performed using soft independent modeling of class analogy (SIMCA) and different spectral data pretreatment. Two levels of SCC - 200 000 cells/$m\ell$ and 300 000 cells/$m\ell$, respectively, were set up and compared as thresholds to discriminate between healthy and mastitic cows. The best detection accuracy was found with 200 000 cells/$m\ell$ as threshold for mastitis and smoothed absorbance data: - 98% of the milk samples in the calibration set and 87% of the samples in the independent test set were correctly classified. When the spectral information was studied it was found that the successful mastitis diagnosis was based on reviling the spectral changes related to the corresponding changes in milk composition. NIRS combined with different ways of spectral data ruining can provide faster and nondestructive alternative to current methods for mastitis diagnosis and a new inside into disease understanding at molecular level.

  • PDF

A Three-Dimensional Modeling Study of Lake Paldang for Spatial and Temporal Distributions of Temperature, Current, Residence Time, and Spreading Pattern of Incoming Flows (팔당호 수온, 유속, 체류시간의 시.공간적 분포 및 유입지류 흐름에 관한 3차원 모델 연구)

  • Na, Eun-Hye;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.978-988
    • /
    • 2005
  • A three-dimensional dynamic model was applied to Lake Paldang, Han River in this study. The model was calibrated and verified using the data measured under different ambient conditions. The model results were in reasonable agreements with the field measurements in both calibration and verification. Utilizing the validated model, we analyzed the spatial and temporal distributions of temperature, current, residence time, and spreading pattern of incoming flows within the lake. Relatively low velocity and high temperature were computed at the surface layer in the southern region of the Sonae island. The longest residence time within the lake was predicted in the southern region of the Sonae island and the downstream region of the South Branch. This can be attributed to the fact that the back currents caused by the dam blocking occur mainly in these regions. Vertical thermal profiles indicated that the thermal stratifications would be occurred feebly in early summer and winter. During early spring and fall, it appeared that there would be no discernible differences at the vertical temperature profiles in the entire lake. The vertical overturns, however, do not occur during these periods due to an influence of high discharge flows from the dam. During midsummer monsoon season with high precipitation, the thermal stratification was disrupted by high incoming flow rates and discharges from the dam and very short residence time was resulted in the entire lake. In this circulation patterns, the plume of the Kyoungan stream with smallest flow rate and higher water temperature tends to travel downstream horizontally along the eastern shore of the south island and vertically at the top surface layer. The model results suggest that the Paldang lake should be a highly hydrodynamic water body with large spatial and temporal variations.

A Study of Organic Matter Fraction Method of the Wastewater by using Respirometry and Measurements of VFAs on the Filtered Wastewater and the Non-Filtered Wastewater (여과한 하수와 하수원액의 VFAs 측정과 미생물 호흡률 측정법을 이용한 하수의 유기물 분액 방법에 관한 연구)

  • Kang, Seong-wook;Cho, Wook-sang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.58-72
    • /
    • 2009
  • In this study, the organic matter and biomass was characterized by using respirometry based on ASM No.2d (Activated Sludge Model No.2d). The activated sludge models are based on the ASM No.2d model, published by the IAWQ(International Association on Water Quality) task group on mathematical modeling for design and operation of biological wastewater treatment processes. For this study, OUR(Oxygen Uptake Rate) measurements were made on filtered as well as non-filtered wastewater. Also, GC-FID and LC analysis were applied for the estimation of VFAs(Volatile Fatty Acids) COD(S_A) in slowly bio-degradable soluble substrates of the ASM No.2d. Therefore, this study was intended to clearly identify slowly bio-degradable dissolved materials(S_S) and particulate materials(X_I). In addition, a method capable of determining the accurate time to measure non-biodegradable COD(S_I), by the change of transition graphs in the process of measuring microbial OUR, was presented in this study. Influent fractionation is a critical step in the model calibrations. From the results of respirometry on filtered wastewater, the fraction of fermentable and readily biodegradable organic matter(S_F), fermentation products(S_A), inert soluble matter(S_I), slowly biodegradable matter(X_S) and inert particular matter(X_I) was 33.2%, 14.1%, 6.9%, 34.7%, 5.8%, respectively. The active heterotrophic biomass fraction(X_H) was about 5.3%.

  • PDF