• Title/Summary/Keyword: Water modeling

Search Result 2,355, Processing Time 0.031 seconds

Water Quality Modeling in the Delaware River Basin by SWAT(Soil and Water Assessment Tools) (SWAT를 이용한 델라웨어강 유역의 수질모델링)

  • Cho, Sung-Min;Lee, Myung-Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.2
    • /
    • pp.39-57
    • /
    • 1995
  • The water quality model SWAT (Soil and Water Assessment Tool) was used in combination with GIS, Arc/Info and GRASS, to evaluate land use impacts in the Delaware River Basin in Pennsylvania. This paper describes application of GIS with the water quality model in the 250 square kilometer Brodhead Creek Watershed. Date used in water quality modeling include 1:250,000 digital elevation models (DEM), soil data, and monitored streamflow and curve numbers, and other input variables.

  • PDF

Modeling of Chlorine Disinfectant Decay in Seawater (해수에서의 소독제 거동 예측 모델에 관한 연구)

  • Han, Jihee;Sohn, Jinsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • Disinfectant/oxidation process is a crucial process in water treatment for supplying safe drinking water. Chlorination is still widely used for water treatment area due to its effectiveness on microbial inactivation and economic feasibility. Recently, disinfection concern in marine environment is increasing, for example, movement of hazardous marine organism due to ballast water, marine environmental degradation due to power plant cooling water discharge, and increase of the amount of disinfectant in the offshore plant. It is needed to conduct the assessment of disinfectant behavior and the development of disinfectant prediction model in seawater. The appropriate prediction model for disinfectant behavior is not yet provided. The objective of the study is to develop chlorine decay model in seawater. Various model types were applied to develop the seawater chlorine decay model, such as first order decay model, EPA model, and two-phase model. The model simulation indicated that chlorine decay in seawater is influenced by both organic and inorganic matter in seawater. While inorganic matter has a negative correlation with the chlorine decay, organic matter has a positive correlation with the chlorine decay.

Water Quality Modeling of the Ara Canal, Using EFDC-WASP Model in Series (3차원 EFDC-WASP 연계모델을 이용한 경인아라뱃길 수질 예측)

  • Yin, Zhenhao;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.101-108
    • /
    • 2013
  • Ara Canal is the first artificial canal in Korea that connects the Han River and the Yellow Sea. Due to mixture of waters with different salinity and water quality, complicated hydrodynamic and water quality distributions are expected to occur inside the canal. An integrated hydrodynamic and water quality modeling system was developed using the 3 dimensional hydrodynamic model, EFDC (Environmental Fluid Dynamics Code) and the water quality model WASP (Water Quality Analysis and Simulation Program). According to the modeling results, BOD, TN, TP and Chl-a concentrations inside the canal were lower at the West Gate side than the Han River side since influent concentrations of the West Gate side are significantly lower. Chemical stratification due to salinity difference were more evident at the West Gate side as vertical salinity difference were more pronounced in this area. On the other hand, Chl-a concentrations showed more pronounced vertical distribution at the Han River side as Chl-a concentrations were higher in this area. It was notable that Dissolved Oxygen concentrations can be lower than 2 mg/L occasionally in the middle part of the canal. While major factor affecting DO concentrations in the canal are inflows via both gates, the other important factor was found to be BOD decay in the canal due to extended hydraulic residence time. This study can be used to predict hydrodynamic conditions and water quality in the canal during the year and thus can be helpful in the development of gate operation method of the canal.

Climate change impact analysis on water supply reliability and flood risk using combined rainfall-runoff and reservoir operation modeling: Hapcheon-Dam catchment case (강우-유출 및 저수지 운영 연계 모의를 통한 기후변화의 이수안전도 및 홍수위험도 영향 분석: 합천댐 유역 사례)

  • Noh, Seong Jin;Lee, Garim;Kim, Bomi;Jo, Jihyeon;Woo, Dong Kook
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.765-774
    • /
    • 2023
  • Due to climatechange, precipitation variability has increased, leading to more frequentoccurrences of droughts and floods. To establish measures for managing waterresources in response to the increasing uncertainties of climate conditions, itis necessary to understand the variability of natural river discharge and theimpact of reservoir operation modeling considering dam inflow and artificialwater supply. In this study, an integrated rainfall-runoff and reservoiroperation modeling was applied to analyze the water supply reliability andflood risk for a multipurpose dam catchment under climate change conditions. Therainfall-runoff model employed was the modèle du Génie Rural à 4 paramètresJournalier (GR4J) model, and the reservoir operation model used was an R-basedmodel with the structure of HEC-Ressim. Applying the climate change scenariosuntil 2100 to the established integrated model, the changes in water supplyreliability and flood risk of the Happcheon Dam were quantitatively analyzed.The results of the water supply reliability analysis showed that under SSP2-4.5conditions, the water supply reliability was higher than that under SSP5-8.5conditions. Particularly, in the far-future period, the range of flood risk widened,and both SSP2-4.5 and SSP5-8.5 scenarios showed the highest median flood riskvalues. While precipitation and runoff were expected to increase by less than10%, dam-released flood discharge was projected to surge by over 120% comparedto the baseline

Physical Modeling of Process Parameters for Aluminum-Foam Generation (물리적 모델링을 이용한 알루미늄 발포공정 영향 인자 해석)

  • 옥성민;문영훈
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.558-564
    • /
    • 2001
  • An experimental modeling is applied to investigate the formation of forms in molten aluminum By using a specially designed equipment, the effect of process variables, such as the shape of stirrer, stirring velocity and fluid viscosity, on the formation of foams were studied in the glycerine added water. Bubbles formed in water had various diameter from 1 to 10 mm and the number of bubbles was 0 to 20/$cm^2$. It turned out that among various variables the stirring velocity and fluid viscosity played important roles on the formation of bubbles. The results obtained from the model experiment were preyed to be convincible also in the real aluminum foam.

  • PDF

Similarity rule of Seepage failure by Centrifuge model test (원심모형시험기를 이용한 사면의 침투 및 파괴에 관한 상사법칙의 검토)

  • Kim, Jae-Young;Jun, Tohda
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.313-318
    • /
    • 2004
  • When plan breakdown by permeation of fill dam, bank by original decision scale model test of sound, original decision scale model test of sound that destroy having used water was carried out. And original decision scale model test of sound that use viscous fluid is carried out, but doubt remains in experiment result in state that verification of law of similarity is not achieved. In this study, verified according to Modeling of Models' method effecting law of similarity to use n ship horoscope solution of water.

  • PDF

Modeling of Daily Reference Evapotranspiration using Polynomial Networks Approach (PNA) (PNA를 이용한 일 기준증발산량의 모형화)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.473-473
    • /
    • 2011
  • Group method of data handling neural networks model (GMDH-NNM) is used to estimate daily reference evapotranspiration (ETo) using limited climatic variables such as max temperature ($T_{max}$), min temperature ($T_{min}$), mean wind speed ($W_{mean}$), mean relative humidity ($RH_{mean}$) and sunshine duration (SD). And, for the performances of GMDH-NNM, it consists of training and test performances, respectively. The training and test performances are carried out using daily time series data, respectively. From this research, we evaluate the impact of GMDH-NNM for the modeling of the nonlinear time series data. We should, thus, construct the credible data of the daily ETo data using GMDH-NNM, and can suggest the methodology for the irrigation and drainage networks system. Furthermore, this research represents that the strong nonlinear relationship such as ETo modeling can be generalized using GMDH-NNM.

  • PDF