• Title/Summary/Keyword: Water modeling

Search Result 2,355, Processing Time 0.034 seconds

Evaluation of Sewer Capacity using Kinetic Hydraulic Model (동력학적 수리해석모델 해석을 통한 하수관거능력 평가)

  • Yang, Hae Jin;Jun, Hang Bae;Son, Dae Ik;Lee, Joon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.565-572
    • /
    • 2009
  • Hydraulic modeling is widely used to simulate wastewater flow. The simulated models are used to prevent flood and many other problems associated with wastewater flow in planning or rehabilitating sewer systems. In this study, MAKESW (An engineer, South Korea), MOUSE (DHI, Denmark), and SWMM (XPSoftware, USA) are used to for hydraulic modeling of wastewater in C-city, South Korea and E-city, Iraq. These modeling tools produced different results. SWMM comparably overpredicted runoff and peak flow. In using SWMM, use of accurate data with a high confidential level, detail examination over the target basin surface, and the careful selection of a runoff model, which describes Korea's unique hydraulic characteristics are recommended. Modification of existing models through the optimization of variables cannot be achieved at this moment. Setting up an integrated modeling environment is considered to be essential to utilize modeling and further apply the results for various projects. Standardization of GIS database, the criteria for and the scope of model application, and database management systems need to be prepared to expand modeling application.

Digital Twin based Household Water Consumption Forecasting using Agent Based Modeling

  • Sultan Alamri;Muhammad Saad Qaisar Alvi;Imran Usman;Adnan Idris
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.147-154
    • /
    • 2024
  • The continuous increase in urban population due to migration of mases from rural areas to big cities has set urban water supply under serious stress. Urban water resources face scarcity of available water quantity, which ultimately effects the water supply. It is high time to address this challenging problem by taking appropriate measures for the improvement of water utility services linked with better understanding of demand side management (DSM), which leads to an effective state of water supply governance. We propose a dynamic framework for preventive DSM that results in optimization of water resource management. This paper uses Agent Based Modeling (ABM) with Digital Twin (DT) to model water consumption behavior of a population and consequently forecast water demand. DT creates a digital clone of the system using physical model, sensors, and data analytics to integrate multi-physical quantities. By doing so, the proposed model replicates the physical settings to perform the remote monitoring and controlling jobs on the digital format, whilst offering support in decision making to the relevant authorities.

A Study on Geotechnical Centrifuge Testing Method for Seismic Performance Evaluation of Large Embankment Dams (대형 댐의 지진응답특성평가를 위한 원심모형시험 기법 연구)

  • Kim, Nam-Ryong;Lim, Jeong-Yeul;Im, Eun-Sang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.201-209
    • /
    • 2016
  • Damages of large embankment dams by recent strong earthquakes in the world highlight the importance of seismic security of dams. Some of recent dam construction projects for water storage and hydropower are located in highly seismic zone, hence the seismic performance evaluation is an important issue. While state-of-the-art numerical analysis technology is generally utilized in practice for seismic performance evaluation of large dams, physical modeling is also carried out where new construction technology is involved or numerical analysis technology cannot simulate the behavior appropriately. Geotechnical centrifuge modeling is widely adopted in earthquake engineering to simulate the seismic behavior of large earth structures, but sometimes it can't be applied for large embankment dams due to various limitations. This study proposes a dynamic centrifuge testing method for large embankment dams and evaluated its applicability. Scaling relations for a case which model scale and g-level are different could be derived considering the stress conditions and predominant period of the structure, which is equivalent to previously suggested scaling relations. The scaling principles and testing method could be verified by modified modeling of models using a model at different acceleration levels. Finally, its applicability was examined by centrifuge tests for an embankment dam in Korea.

Modeling of Co(II) adsorption by artificial bee colony and genetic algorithm

  • Ozturk, Nurcan;Senturk, Hasan Basri;Gundogdu, Ali;Duran, Celal
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.363-371
    • /
    • 2018
  • In this work, it was investigated the usability of artificial bee colony (ABC) and genetic algorithm (GA) in modeling adsorption of Co(II) onto drinking water treatment sludge (DWTS). DWTS, obtained as inevitable byproduct at the end of drinking water treatment stages, was used as an adsorbent without any physical or chemical pre-treatment in the adsorption experiments. Firstly, DWTS was characterized employing various analytical procedures such as elemental, FT-IR, SEM-EDS, XRD, XRF and TGA/DTA analysis. Then, adsorption experiments were carried out in a batch system and DWTS's Co(II) removal potential was modelled via ABC and GA methods considering the effects of certain experimental parameters (initial pH, contact time, initial Co(II) concentration, DWTS dosage) called as the input parameters. The accuracy of ABC and GA method was determined and these methods were applied to four different functions: quadratic, exponential, linear and power. Some statistical indices (sum square error, root mean square error, mean absolute error, average relative error, and determination coefficient) were used to evaluate the performance of these models. The ABC and GA method with quadratic forms obtained better prediction. As a result, it was shown ABC and GA can be used optimization of the regression function coefficients in modeling adsorption experiments.

Modeling of a pulse combustion water heater (맥동 연소식 온수기의 모델링)

  • 이관수;김창기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.982-990
    • /
    • 1987
  • In previous modeling of Helmholtz-type pulse combustion water heater, muffler and the motion of the flapper valve were omitted. In present work, these have been included in modeling for providing more accurate information regarding the thermal and dynamic behavior of the water heater. In addition, a computer simulation based on the modeling was developed. The comparison of computer predictions with available experimental data shows that the simulation is satisfactory in predicting the nature of operating behavior, amplitudes of the pressure oscillations, and the magnitude of the frequency. But the predicted time-averaged axial temperature of the flue gas along the flue tube length is somewhat below the previous experimental results. The temperature pulsation of the combustion chamber and the velocity pulsation of the flue gas were predicted which have never been measured in previous studies. In particular, the latter is of importance for a valid determination of the heat transfer enhancement due to the gas flow pulsation. Heat transfer results in flue tube were presented and discussed. Also the effects on the installation of the muffler were investigated.

Planning of alternative countermeasures for a station blackout at a boiling water reactor using multilevel flow modeling

  • Song, Mengchu;Gofuku, Akio
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.542-552
    • /
    • 2018
  • Operators face challenges to plan alternative countermeasures when no procedure exists to address the current plant state. A model-based approach is desired to aid operators in acquiring plant resources and deriving response plans. Multilevel flow modeling (MFM) is a functional modeling methodology that can represent intentional knowledge about systems, which is essential in response planning. This article investigates the capabilities of MFM to plan alternatives. It is concluded that MFM has a knowledge capability to represent alternative means that are designed for given ends and a reasoning capability to identify alternative functions that can causally influence the goal achievement. The second capability can be applied to find originally unassociated means to achieve a goal. This is vital in a situation where all designed means have failed. A technique of procedure synthesis can be used to express identified alternatives as a series of operations. A case of station blackout occurring at the boiling water reactor is described. An MFM model of a boiling water reactor is built according to the analysis of goals and functions. The accident situations are defined by the model, and several alternative countermeasures in terms of operating procedures are generated to achieve the goal of core cooling.

Store-Release based Distributed Hydrologic Model with GIS (GIS를 이용한 기저-유출 바탕의 수문모델)

  • Kang, Kwang-Min;Yoon, Se-Eui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.35-35
    • /
    • 2012
  • Most grid-based distributed hydrologic models are complex in terms of data requirements, parameter estimation and computational demand. To address these issues, a simple grid-based hydrologic model is developed in a geographic information system (GIS) environment using storage-release concept. The model is named GIS Storage Release Model (GIS-StoRM). The storage-release concept uses the travel time within each cell to compute howmuch water is stored or released to the watershed outlet at each time step. The travel time within each cell is computed by combining the kinematic wave equation with Manning's equation. The input to GIS-StoRM includes geospatial datasets such as radar rainfall data (NEXRAD), land use and digital elevation model (DEM). The structural framework for GIS-StoRM is developed by exploiting geographic features in GIS as hydrologic modeling objects, which store and process geospatial and temporal information for hydrologic modeling. Hydrologic modeling objects developed in this study handle time series, raster and vector data within GIS to: (i) exchange input-output between modeling objects, (ii) extract parameters from GIS data; and (iii) simulate hydrologic processes. Conceptual and structural framework of GIS StoRM including its application to Pleasant Creek watershed in Indiana will be presented.

  • PDF

Modeling of Water Temperature in the Downstream of Yongdam Reservoir using 1-D Dynamic Water Quality Simulation Model (1차원 동적수질모형을 활용한 용담댐 하류하천의 수온변동 모의)

  • Noh, Joonwoo;Kim, Sang-Ho;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.356-364
    • /
    • 2010
  • The chemical and biological reaction of the aquatic organism is closely related with temperature variation and water temperature is one of the most important factors that should be considered in establishing sustainable reservoir operation scheme to minimize adverse environmental impacts related with dam construction. This paper investigates temperature variation in the downstream of Yongdam Reservoir using sampled data collected from total 8 temperature monitoring stations placed along the main river and the major tributaries. Using KoRiv1, 1-dimensional dynamic water quality simulation model, temperature variation in the downstream of Yongdam Reservoir has been simulated. The simulated results were compared with sampled data collected from May 15 to August 1 2008 by applying two different temperature modeling schemes, equilibrium temperature and full heat budget method. From the result of statistical analysis, seasonal temperature variation has been simulated by applying the equilibrium temperature scheme for comparison of the difference between the reservoir operation and the natural conditions.

Auto Calibration of Water Quality Modeling Using NGIS (NGIS자료와 연계한 수질모의 결과의 자동보정)

  • Han, Kun Yeun;Lee, Chang Hee;Kim, Kang Mo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1400-1403
    • /
    • 2004
  • The current industrial development and the Increase of population along Nakdong River have produced a rapid Increase of wastewater discharge. This has resulted in problem of water quality control and management. Although many efforts have been carried out, water quality has not significantly improved. The goal of this study is to design a NGIS-based water quality management system for the scientific water quality control and management in the Nakdong River. For general water quality analysis, QULA2E model was applied to the Nakdong River. A sensitivity analysis was made to determine significant parameters and an optimization was made to estimate optimal values. The calibration and verification were performed by using observed water quality data for Nakdong River. A water qualify management system for Nakdong River was made by connecting the QUAL2E model to ArcView. It allows a Windows-based Graphic User Interface(GUI) to implement all operation with regard to water quality analysis. The modeling system in this study will be an efficient NGIS for planning of water quality management.

  • PDF