• Title/Summary/Keyword: Water model

Search Result 13,788, Processing Time 0.041 seconds

Water Demand and Supply Stability Analysis Using Shared Vision Model (Shared Vision 모형을 이용한 용수수급의 안정성 분석)

  • Jeong, Sang-Man;Lee, Joo-Heon;Ahn, Joong-Kun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.569-579
    • /
    • 2004
  • Recently, the extreme drought is often occurred due to the global warming and the serious weather changes. Also, the problems of the water pollution In the developed areas, the oppositions from people in the upper stream area and water concession from the local governments affect the national request to get more clean water resources in upper stream of the undeveloped areas. It also brings on the necessity of recognition for water supply managements. Therefore, as the water demand is rapidly changes in the metropolitan areas, the capability of water supply from the north Han river basin dams should be appropriately investigated. In this study, we developed a simulation system using STELLA (equation omitted) software environment, a shared vision model, to analyze the possibility of the stable water supply from north Han river basin dams. Also, three different rules are applied on this model by dividing the water level to minimum(Rule 1), medium(Rule 2) and maximum(Rule 3). Using the rules, the safety yield changes are analyzed for dam rule curve of the reservoir and hydropower release.

Stochastic Properties of Water Quality Variation in Downstream Part of Han River (한강 하류부의 수질변동에 대한 추계학적 특성(I) - 특히 뚝도 및 노량진 지점의 DO, 탁도, 수온의 변동을 중심으로 -)

  • 이홍근
    • Water for future
    • /
    • v.15 no.3
    • /
    • pp.23-36
    • /
    • 1982
  • The stochastic variations and structures of time series data on water quality were examined by employing the techniques of autocorrelation function, variance spectrum, Fourier series, autoregressive model and ARIMA model. These time series included hourly and daily observation on DO, turbidity, conductivity pH and water temperature. The measurement was made by automatic recording instrument at Noryangjin and Dook-do located in the downstream part of Han River during 1975 and 1976. Hourly water quality time series varied with the dominant 24-hour periodicity, and the 12-hour periodicity was also observed. An important factor affecting 24-hour periodic variation of DO is believed to be photosynthesis by algae. These phenomena might be attributable to periodic discharges of municipal sewage. Noryangjin site showed the more distinct 12-hour periodicity than Dook-do site did, and tidal effect might be responsible for the difference. The water quality, as measured by DO and turbidity, was better in the afternoon compared with the quality in the morning. This change can be explained by the periodic variation of DO, temperature and the amount of municipal wewage discharge. It was also observed that the water temperature at Noryangjin was higher than the temperature at Dook-do. This difference might have been caused by the pollutants that were added to the section between two sites. The correlation coefficients between some of the variables were fairly high. For example, the coefficient was -0.88 between DO and water temperature, 0.75 between turbidity and river flow, and 0.957 between water temperature and air temperature. The lag time of heat transfer from the air to the water was estimated as 24 days. The first order auto-regressive model was appropriate for explaning standardized hourly DO time series. The ARIMA model of (1, 0, 0) type provided relatively satisfactory results for daily DO time series after the removal of significant harmonic value.

  • PDF

Stream Flow Analysis of Dry Stream on Flood Runoff in Islands (도서지역 건천의 홍수유출 시 흐름 해석)

  • Yang, Won-Seok;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.571-580
    • /
    • 2013
  • In this study, compared with the result of water surface elevation and water velocity on the establishment of river maintenance basic plan and result of HEC-GeoRAS based GIS, and after use the result of water surface elevation and velocity were observed in the Han stream on Jeju island, analysis 2 dimensional stream flow. the lateral hydraulic characteristics and curved channel of the stream were analyzed by applying SMS-RMA2 a 2 dimensional model. The results of the analysis using HEC-RAS model and HEC-GeoRAS model indicated that the distribution ranges of water surface elevation and water velocity were similar, but the water surface elevation by section showed a difference of 0.7~2.18 EL.m and 0.63~1.16 EL.m respectively, and water velocity also showed differences of maximum 1.58m/sec and 2.67m/sec. SMS-RMA2 analysis was done with the sphere of Muifa the typhoon as a boundary condition, and as a result, water velocity distribution was found to be 1.19 through 3.91 m/sec, and the difference of lateral water velocity in No. 97 through 99 the curved channel of the stream was analyzed to be 1.59 through 2.36 m/sec. In conclusion it is anticipated that the flow analysis of 2 dimension model of stream can reflect the hydraulic characteristics of the stream curved channel or width and shape, and can be applied effectively in the establishment of river maintenance basic plan or management and designing of stream.

Assessment of Water Quality Characteristics in the Middle and Upper Watershed of the Geumho River Using Multivariate Statistical Analysis and Watershed Environmental Model (다변량통계분석 및 유역환경모델을 이용한 금호강 중·상류 유역의 수질특성평가)

  • Seo, Youngmin;Kwon, Kooho;Choi, Yun Young;Lee, Byung Joon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.520-530
    • /
    • 2021
  • Multivariate statistical analysis and an environmental hydrological model were applied for investigating the causes of water pollution and providing best management practices for water quality improvement in urban and agricultural watersheds. Principal component analysis (PCA) and cluster analysis (CA) for water quality time series data show that chemical oxygen demand (COD), total organic carbon (TOC), suspended solids (SS) and total phosphorus (T-P) are classified as non-point source pollutants that are highly correlated with river discharge. Total nitrogen (T-N), which has no correlation with river discharge and inverse relationship with water temperature, behaves like a point source with slow and consistent release. Biochemical oxygen demand (BOD) shows intermediate characteristics between point and non-point source pollutants. The results of the PCA and CA for the spatial water quality data indicate that the cluster 1 of the watersheds was characterized as upstream watersheds with good water quality and high proportion of forest. The cluster 3 shows however indicates the most polluted watersheds with substantial discharge of BOD and nutrients from urban sewage, agricultural and industrial activities. The cluster 2 shows intermediate characteristics between the clusters 1 and 3. The results of hydrological simulation program-Fortran (HSPF) model simulation indicated that the seasonal patterns of BOD, T-N and T-P are affected substantially by agricultural and livestock farming activities, untreated wastewater, and environmental flow. The spatial analysis on the model results indicates that the highly-populated watersheds are the prior contributors to the water quality degradation of the river.

Changes in the Hydrodynamic Characteristics of Ships During Port Maneuvers

  • Mai, Thi Loan;Vo, Anh Khoa;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • To reach a port, a ship must pass through a shallow water zone where seabed effects alter the hydrodynamics acting on the ship. This study examined the maneuvering characteristics of an autonomous surface ship at 3-DOF (Degree of freedom) motion in deep water and shallow water based on the in-port speed of 1.54 m/s. The CFD (Computational fluid dynamics) method was used as a specialized tool in naval hydrodynamics based on the RANS (Reynolds-averaged Navier-Stoke) solver for maneuvering prediction. A virtual captive model test in CFD with various constrained motions, such as static drift, circular motion, and combined circular motion with drift, was performed to determine the hydrodynamic forces and moments of the ship. In addition, a model test was performed in a square tank for a static drift test in deep water to verify the accuracy of the CFD method by comparing the hydrodynamic forces and moments. The results showed changes in hydrodynamic forces and moments in deep and shallow water, with the latter increasing dramatically in very shallow water. The velocity fields demonstrated an increasing change in velocity as water became shallower. The least-squares method was applied to obtain the hydrodynamic coefficients by distinguishing a linear and non-linear model of the hydrodynamic force models. The course stability, maneuverability, and collision avoidance ability were evaluated from the estimated hydrodynamic coefficients. The hydrodynamic characteristics showed that the course stability improved in extremely shallow water. The maneuverability was satisfied with IMO (2002) except for extremely shallow water, and collision avoidance ability was a good performance in deep and shallow water.

Construction of a Short-term Time-series Prediction Model for Analysis of Return Flow of Residential Water (생활용수 회귀수량의 분석을 위한 시계열 단기 예측모형 구축)

  • Lee, Seungyeon;Lee, Sangeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.763-774
    • /
    • 2023
  • The water availability in a river is related to the return flow of residential water. However it is still difficult to determine the exact return flow. In this study, the residential water-cycle system is defined as a process consisting of water inflow, water transfer and water outflow. The study area is Hampyeong-gun, Jeollanam-do, and is set as a single inflow to a single outflow through the water-cycle system after classification of complete and incomplete measurement points. The time-series prediction models(ARIMA model and TFM) are established with daily inflow and outflow data for 6 years. Inflow and outflow are predicted by dividing into training and test periods. As a result, both models show the feasibility of short-term prediction by deriving stable residuals and securing statistical significance, implementing the preliminary form of the water-cycle system. As a further study, it is suggested to predict the actual return flow of the target basin and efficient water operation by adding input factors and selecting the optimal model.

Groundwater Movement Analysis according to Groundwater-Surface Water Interaction (지표수-지하수 상호관계에 따른 지하수 유동분석)

  • Ahn, Seung-Seop;Park, Dong-Il;Jung, Do-Joon;Seok, Dong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1945-1949
    • /
    • 2009
  • It is fact that many research is advanced about management and security of water resources according to serious problem which is raising its head that conservancy and management of water resources development of population and industry. Ground water of water resources is the source of water resources security with surface water, so it have to be continuous exploitation and research however, until now it researched in separate way from surface water, and it become connect each other for the research in actual condition in recent times. The research analyzed the recharge at the SWAT model, interpreted by used GMS/MODFLOW model for ground water flow change.

  • PDF

A Study on Soil-Water Characteristic Curves of Reclaimed Soil and Weathered Granite Soil (준설매립토 및 화강풍화토의 흙-수분 특성곡선에 관한 연구)

  • 신은철;이학주;김환준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.743-750
    • /
    • 2002
  • Unsaturated soil has a possibility to induce a negative pore water pressure. Until now, saturated soil is mainly focused on the research of soil mechanics. Recently, soil mechanics is researched on two major parts such as saturated and unsaturated soil mechanics. Negative pore water pressure has a non-linear relationship with the water content changes. Soil-water characteristic curves of soil in Korea are not determined. There is no proper characteristic value such as air-entry value and residual water content. In this study, the characteristic curves of reclaimed soil, sand, and weathered granite soil were determined by laboratory tests. Air-entry value and residual water content were determined by fitting methods. Soil-water characteristic curves were estimated based on the particle-size distribution and compared with the laboratory test results. The results of soil-water characteristic curves estimation indicated that Fredlund and Wilson's model is excellent for sand and weathered granite soil. Arya and Paris's model is excellent for reclaimed soil.

  • PDF

A Study on Mathematical Model for Water Quality Forecasting at Anyang Stream (안양시 관내하천 수질모형 예측에 관한 연구)

  • Kim, Gab-Jin;Lee, Yang-Kyoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.112-123
    • /
    • 1997
  • The Anyang stream is one of the Han river in Seoul Metropolitan area. It is 35.1km long, has a basin area of $282.26km^2$ and touches seven cities of Kyounggido and some of Seoul Metropolitan area. The situations of Anyang stream have resulted in severe stream water pollution problems. The purpose of this study were to measure the hydraulic characteristics and water quality, to make the countermeasures to achieve the stream water quality, to suggest the future conditions to improve water quality trough the Hydrodynamic and Water Quality Modal(WASP4). As the result of Anyang stream water quality forecsat, they are follows. Sewerage systems in the watershed of the Anyang stream have to be amended for wrong systemn and constructed in the upstream area of Anyang. The discharge of industrial wastewater has to be throughly controlled from the upstream area of the Anyang stream. Hydrodynamic and Water Quality Model(WASP4) for this study revealed the future water quality of the Anyang stream by computer simulation.

  • PDF

Shallow Water Low-frequency Reverberation Model (천해 저주파 잔향음 예측모델)

  • 김남수;오선택;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.679-685
    • /
    • 2002
  • Low-frequency mono-static reverberation model for shallow-water environment is presented. It is necessary to develop the transmission loss model to calculate the sub-bottom interaction because the ray-based transmission loss model is difficult to compute the pressure accurately which penetrates the bottom medium. In this paper reverberation level is calculated using the RAM (Range dependent Acoustic Model) to augment the multi-path expansion model because it does not estimate transmission loss accurately in shallow water. The signals generated by the L-HYREV and the GSM are compared with the observed signals and it is showed that the L-HYREV model provides a closer fit to the observed signals than those obtained using the GSM.