• Title/Summary/Keyword: Water model

Search Result 13,750, Processing Time 0.034 seconds

An Introduction to the Ground Water Model Test (지하수 model에 관한 모형시험방법)

  • 김주욱
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.9 no.2
    • /
    • pp.1301-1305
    • /
    • 1967
  • Ground water flow can be studied with model test. Model test of ground water works are necessary for economic and safe design of the works. Also influence of the ground water flow to the durability and safety of hydraulic structures can be studied with this model. a. Sand model ; Water flow through porous media is the principle of sand model. Darcy's formula is the basic equation, $q=k{\frac{dh}{ds}}^{\circ}. The effect of the ground water flow on the grain system itself is represented with this model only. b. Hele-Shaw model ; In this model use is made of the viscous flow analogy. Viscous fluid such as glycerine flowing through two parallel plates depends on Poiseuille law, $q=-c{\frac{dh}{ds}}$. The analogue can be used vertically and horizontally. c. Heat model ; This is based on the analogy of the Fourier's law for heat conduction and Darcy's law for ground water flow. Especially unsteady problem can be studied with this model. A difficulty of the construction of this model is the isolation, which has to prevent losses of the heat. d. Electirc model ; Ohm's law for electric current is analogous to Darcy's law. Resistance material such as metal foil, graphite block, water with salt added, gelatine with salt added, ete. is connected to electric sources and resistor, and equi-voltage line is detected with galvanometer, $N_aCl$, $CuSo_4$, etc. are used as salt in the model. e. Membrane model ; This model is based on the facts that the deflection of a thin membrane obeys Laplace's equation if there is no load in the direction perpendicular to the membrane, and if the dellection is small.

  • PDF

EXPERIMENT AND SIMULATION OF A WIND-DRIVEN REVERSE OSMOSIS DESALINATION SYSTEM

  • Park, Sang-Jin;Clark C.K. Liu
    • Water Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.1-17
    • /
    • 2003
  • A mathematical model was developed to simulate the performance of a prototype wind-powered reverse osmosis desalination system. The model consists of two sub-models operated in a series. The first sub-model is the wind-energy conversion sub-model, which has wind energy and feed water as its input and pressurized feed water as its output. The second sub-model is a reverse osmosis (RO) process sub-model, with pressurized feed water as its input and the flow and salinity of the product water or permeate as its output. Model coefficients were determined based on field experiments of a prototype wind powered RO desalination system of the University of Hawaii, from June to December 2001. The mathematical model developed by this study predicts the performance of wind-powered RO desalination systems under different design conditions. The system optimization is achieved using a linear programming approach. Based on the results of system optimization, a design guide is prepared, which can be used by both manufacturer and end-user of the wind-driven reverse osmosis system.

  • PDF

Experimental study of dynamic interaction between group of intake towers and water

  • Wang, Haibo;Li, Deyu;Tang, Bihua
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.163-179
    • /
    • 2014
  • Dynamic test with scaled model of a group of intake towers was performed to study the dynamic interaction between water and towers. The test model consists of intake tower or towers, massless foundation near the towers and part of water to simulate the dynamic interaction of tower-water-foundation system. Models with a single tower and 4 towers were tested to find the different influences of the water on the tower dynamic properties, seismic responses as well as dynamic water-tower interaction. It is found that the water has little influence on the resonant frequency in the direction perpendicular to flow due to the normal force transfer role of the water in the contraction joints between towers. By the same effect of the water, maximum accelerations in the same direction on 4 towers tend to close to each other as the water level increased from low to normal level. Moreover, the acceleration responses of the single tower model are larger than the group of towers model in both directions in general. Within 30m from the surface of water, hydrodynamic pressures were quite close for a single tower and group of towers model at two water levels. For points deeper than 30m, the pressures increased about 40 to 55% for the group of towers model than the single tower model at both water levels. In respect to the pressures at different towers, two mid towers experienced higher than two side towers, the deeper, the larger the difference. And the inside hydrodynamic pressures are more dependent on ground motions than the outside.

Development of a Hydrologic System for Simulating Daily Water Storage in an Estuary Reservoir

  • Noh, Jae-Kyoung
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.1-10
    • /
    • 2003
  • In order to analyze the water supply capacity in an estuary reservoir, a system composed of daily water balance model and daily inflow model was developed. The agricultural water demands to paddy fields, domestic water demands to residential areas, and industrial water demands to industrial complexes were considered in this daily water balance model. Likewise, the outflow volume through sluice gates and inside the water level at the start of the outflow was initially conditioned to simulate estuary reservoir storage. The DAWAST model (Noh, 1991) was selected to simulate daily estuary reservoir inflow, wherein return flows from agricultural, domestic, and industrial water were included to simulate runoff. Using this system, the water supply capacity in the Geum River estuary reservoir was analyzed.

Dynamic evaluation of water source safety based on fuzzy extension model

  • Ou, Bin;Gong, Aimin;He, Chunxiang;Fu, Shuyan
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.149-154
    • /
    • 2019
  • The information matter-element system was built to assess safety of water source. Based on the thought of multiindex fusion, fuzzy matter-element model evaluating water source behavior was constructed by matter-element transform. This model can process comprehensively hydrogeological data, ecological environment, water pollution, surface disturbance, and so on. Water source safety behavior can be described by the qualitative and quantitative manners. According to the development trend of quantitative results, water source safety behavior can be expressed dynamically. As an example, the proposed method was used to assess safety status of 7 water sources in the region. The numerical example shows that the proposed method is feasible and effective, and the evaluation results are reasonable.

Forecasting River Water Levels in the Bac Hung Hai Irrigation System of Vietnam Using an Artificial Neural Network Model

  • Hung Viet Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.37-37
    • /
    • 2023
  • There is currently a high-accuracy modern forecasting method that uses machine learning algorithms or artificial neural network models to forecast river water levels or flowrate. As a result, this study aims to develop a mathematical model based on artificial neural networks to effectively forecast river water levels upstream of Tranh Culvert in North Vietnam's Bac Hung Hai irrigation system. The mathematical model was thoroughly studied and evaluated by using hydrological data from six gauge stations over a period of twenty-two years between 2000 and 2022. Furthermore, the results of the developed model were also compared to those of the long-short-term memory neural networks model. This study performs four predictions, with a forecast time ranging from 6 to 24 hours and a time step of 6 hours. To validate and test the model's performance, the Nash-Sutcliffe efficiency coefficient (NSE), mean absolute error, and root mean squared error were calculated. During the testing phase, the NSE of the model varies from 0.981 to 0.879, corresponding to forecast cases from one to four time steps ahead. The forecast results from the model are very reasonable, indicating that the model performed excellently. Therefore, the proposed model can be used to forecast water levels in North Vietnam's irrigation system or rivers impacted by tides.

  • PDF

Preliminary Molecular Dynamics Simulations of the OSS2 Model for the Solvated Proton in Water

  • Lee, Song Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.847-849
    • /
    • 2001
  • The OSS2(Ojame-Shavitt-Singer 2)[L. Ojame et al., J. Chem. Phys. 109, 5547 (1998)] model as a dissociable water model is examined in order to study the dynamics of H+ in water. MD simulations for 216 water system, 215 water + H+ ion system, and 215 water + OH- ion system using the OSS2 model at 298.15 K with the use of Ewald summation are carried out. The calculated O-H radial distribution functions for these systems are essentially the same and are in very good agreement with that obtained by Ojame.

Comparison of streamflow runoff model in Korea for applying to reservoir operation (저수지 운영을 위한 한국 하천 유출 모형의 비교)

  • Noh, Jae-Kyoung;Lee, Jae-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.3
    • /
    • pp.513-524
    • /
    • 2011
  • To evaluate the applicability of inflow runoff model to reservoir operation in Korea, DAWAST model and TPHM model which are conceptual lumped daily runoff model and were developed in Korea, were selected and applied to simulate inflows to Daecheong multipurpose dam with watershed area of 4,134 $km^2$, and water storages in Geryong reservoir with watershed area of 15.1 $km^2$ and total water storage of 3.4 M $m^3$. Evaluating inflows on an yearly, monthly, ten-day, and daily basis, inflows by DAWAST model showed balanced scatters around equal value line. But inflow by TPHM model showed high in high flows. Annual mean water balance by DAWAST model was rainfall of 1,159.9 mm, evapotranspiration of 622.1 mm, and inflow of 644.6 mm, from which rainfall was 104.8 mm less than sum of evapotranspiration and inflow, and showed unbalanced result. Water balance by TPHM model showed satisfactory result. Reservoir water storages were shown to simulate on a considerable level from applying DAWAST and TPHM models to simulate inflows to Geryong reservoir. But it was concluded to be needed to improve DAWAST and TPHM model together from imbalance of water balance and low estimation in high flow.

Study on Current and Water Quality Characteristics in Yongil Bay (영일만내의 유동과 수질특성에 관한 연구)

  • 김헌덕;김종인;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.28-37
    • /
    • 2001
  • The water quality in Yongil Bay is getting worse due to the sewage and the waste water from the surrounding industrial complex. The study aims to simulate the current system that is necessary to build ecosystem model for the optium water quality control and clarify the correlation of current system characteristics with water quality in Yongil Bay. To clarify the characteristics of coastal water movement system and verify the applicability of the 3-D model, the current system was simulated using 3-D model baroclinic model which considers tidal current and density effects. As the results of numerical experiments, it is proved the 3-D model is the most applicable on appearing the current system of the stratificated Yongil Bay difference of density. Form the results of simulation considered tidal current only, it can be clarified that the water body flows in the inner bay through the bottom layer and flows out the outer bay through the surface layer in Yongil Bay. And the fresh water from the Hyongsan river and the thermal discharge form POSCO have a little effect on the current system in Yongil Bay, but the diffusion of heat and salt has an important effect upon the formation of the density stratification of the water quality distribution is closely related with the current structure characteristics as well as the tidal residual current system in Yongil Bay.

  • PDF

Boron removal from model water by RO and NF membranes characterized using S-K model

  • Kheriji, Jamel;Tabassi, Dorra;Bejaoui, Imen;Hamrouni, Bechir
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.193-207
    • /
    • 2016
  • Boron is one of the most problematic inorganic pollutants and is difficult to remove in water. Strict standards have been imposed for boron content in water because of their high toxicity at high concentrations. Technologies using membrane processes such as reverse osmosis (RO) and nanofiltration (NF) have increasingly been employed in many industrial sectors. In this work, removal of boron from model water solutions was investigated using polyamide reverse osmosis and nanofiltration membranes. RO-AG, RO-SG, NF-90 and NF-HL membranes were used to reduce the boron from model water at different operational conditions. To understand the boron separation properties a characterization of the four membranes was performed by determining the pure water permeability, surface charge and molecular weight cut-off. Thereafter, the effect of feed pressure, concentration, ionic strength, nature of ions in solution and pH on the rejection of boron were studied. The rejection of boron can reach up to 90% for the three membranes AG, SG and NF-90 at pH = 11. The Spiegler-Kedem model was applied to experimental results to determine the reflection coefficient of the membrane ${\sigma}$ and the solute permeability $P_s$.