• Title/Summary/Keyword: Water model

Search Result 13,750, Processing Time 0.036 seconds

Analysis of Impact of Climate Change on River Flows in an Agricultural Watershed Using a Semi-distributed Watershed Model STREAM (준분포형 유역모델 STREAM을 이용한 기후변화가 농업유역의 하천유량에 미치는 영향 분석)

  • Jeong, Euisang;Cho, Hong-Lae
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.131-144
    • /
    • 2019
  • Climate Change affects the hydrological cycle in agricultural watersheds through rising air temperature and changing rainfall patterns. Agricultural watersheds in Korea are characterized by extensive paddy fields and intensive water use, a resource that is under stress from the changing climate. This study analyzed the effects of climate change on river flows for Geum Cheon and Eun-San Choen watershed using STREAM, a semi-distributed watershed model. In order to evaluate the performance and improve the reliability of the model, calibration and validation of the model was done for one flow observation point and three reservoir water storage ratio points. Climate change scenarios were based on RCP data provided by the Korea Meteorological Administration (KMA) and bias corrections were done using the Quantile Mapping method to minimize the uncertainties in the results produced by the climate model to the local scale. Because of water mass-balance, evapotranspiration tended to increase steadily with an increase in air temperature, while the increase in RCP 8.5 scenario resulted in higher RCP 4.5 scenario. The increase in evapotranspiration led to a decrease in the river flow, particularly the decrease in the surface runoff. In the paddy agricultural watershed, irrigation water demand is expected to increase despite an increase in rainfall owing to the high evapotranspiration rates occasioned by climate change.

Drought forecasting over South Korea based on the teleconnected global climate variables

  • Taesam Lee;Yejin Kong;Sejeong Lee;Taegyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.47-47
    • /
    • 2023
  • Drought occurs due to lack of water resources over an extended period and its intensity has been magnified globally by climate change. In recent years, drought over South Korea has also been intensed, and the prediction was inevitable for the water resource management and water industry. Therefore, drought forecasting over South Korea was performed in the current study with the following procedure. First, accumulated spring precipitation(ASP) driven by the 93 weather stations in South Korea was taken with their median. Then, correlation analysis was followed between ASP and Df4m, the differences of two pair of the global winter MSLP. The 37 Df4m variables with high correlations over 0.55 was chosen and sorted into three regions. The selected Df4m variables in the same region showed high similarity, leading the multicollinearity problem. To avoid this problem, a model that performs variable selection and model fitting at once, least absolute shrinkage and selection operator(LASSO) was applied. The LASSO model selected 5 variables which showed a good agreement of the predicted with the observed value, R2=0.72. Other models such as multiple linear regression model and ElasticNet were also performed, but did not present a performance as good as LASSO. Therefore, LASSO model can be an appropriate model to forecast spring drought over South Korea and can be used to mange water resources efficiently.

  • PDF

Analysis on the evolution of water resources situation in Qiandao Lake Basin from 1960 to 2020

  • DU Junkai;Qiu Yaqin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.27-27
    • /
    • 2023
  • To analyze the evolution of water resources in Qiandao Lake Basin under the condition of climate change, a WEP-L distributed hydrological model was established to simulate the water cycle process in the basin during 1960-2020. The Mann-Kendall non-parametric test method and Hurst index method were used to analyze the inter-annual variation and annual distribution characteristics of the total water resources in the basin. The multi-scale temporal and spatial distribution and evolution trend of water resources in Qiandao Lake Basin were evaluated. The results show that: (1) The WEP-L model has good simulation results in the Qiandao Lake basin, and the Nash coefficient rate is above 0.83 in the periodic period and above 0.85 in the verification period. (2) The water yield coefficient of the whole basin ranges from 0.436 to 0.630. The annual average total water resource is 12.25 billion m3, equivalent to 1176.4mm of water depth. The annual distribution process shows a unimodal structure, and the water depth of each sub-basin ranges from 742 mm to 1266 mm, and the spatial distribution is higher in the west and lower in the east. (3) The annual water resources series in the basin showed an insignificant upward trend, and the Hurst index was 0.86, indicating a continuous upward trend. From the perspective of monthly water resources, January and February increased significantly, the other months were not significant changes.

  • PDF

Calibration and Sensitivity Analysis of the RICEWQ Model (RICEWQ 모형의 보정 및 민감도 분석)

  • Chung, Sang-Ok;Park, Ki-Jung;Son, Seung-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.3-10
    • /
    • 2008
  • The main objectives of this study are to calibrate the RICEWQ model with Korean field data and then analyse the sensitivity of the parameters to identify sensitive parameters. The RICEWQ is widely used to predict pesticide fate in a paddy plot. An experimental paddy plot of 0.2 ha($100{\times}20\;m$) at Seobyeon-dong, Daegu, Korea was selected, and field observations for water and pesticide balance were performed from 4 June to 2 September 2006. The molinate, which is a herbicide widely used for weed control in rice culture, was selected. The RICEWQ model was successfully calibrated both for the water and pesticide mass balance. The calibrated model showed a RMSE of 0.537 cm for ponded water depths and a RMSE of 0.036 mg/L for the molinate concentrations in the ponded water. The most sensitive parameters for molinate concentrations in ponded water were the metabolism degradation rate in water, volatilization coefficient, and release rate for slow release formulation. In contrast, the RICEWQ model was not sensitive to parameters such as hydrolysis degradation rate in water and degradation rate in unsaturated soil.

Operational Water Quality Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 수질 예측)

  • Shin, Chang Min;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.570-581
    • /
    • 2016
  • A watershed model was constructed using the Hydrological Simulation Program Fortran to predict the water quality, especially chlorophyll-a concentraion, at major tributaries of the Nakdong River basin, Korea. The BOD export loads for each land use in HSPF model were estimated at $1.47{\sim}8.64kg/km^2/day$; these values were similar to the domestic monitoring export loads. The T-N and T-P export loads were estimated at $0.618{\sim}3.942kg/km^2/day$ and $0.047{\sim}0.246kg/km^2/day$, slightly less than the domestic monitoring data but within the range of foreign literature values. The model was calibrated at major tributaries for a three-year period (2008 to 2010). The deviation values ranged from -31.5~1.6% of chlorophyll-a, -24.0~2.2% of T-N, and -5.7~34.8% of T-P. The root mean square error (RMSE) ranged from 4.3~44.4 ug/L for chlorophyll-a, -0.6~1.5 mg/L for T-N, and 0.04~0.18 mg/L for T-P, which indicates good calibration results. The operational water quality forecasting results for chlorophyll-a presented in this study were in good agreement with measured data and had an accuracy similar with model calibration results.

Investigation of water length effects on the modal behavior of a prototype arch dam using operational and analytical modal analyses

  • Sevim, Baris;Bayraktar, Alemdar;Altunisik, Ahmet Can
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.593-615
    • /
    • 2011
  • This study determines the water length effects on the modal behavior of a prototype arch dam using Operational and Analytical Modal Analyses. Achievement of this purpose involves construction of a prototype arch dam-reservoir-foundation model under laboratory conditions. In the model, reservoir length was taken to be as much as three times the dam height. To determine the experimental dynamic characteristics of the arch dam using Operational Modal Analysis, ambient vibration tests were implemented for empty reservoir and three different reservoir water lengths. In the ambient vibration tests, the dam was vibrated by natural excitations provided from small impact effects and the response signals were measured using sensitive accelerometers. Operational Modal Analysis software process signals collected from the ambient vibration tests, and Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques estimated modal parameters of the dams. To validate the experimental results, 3D finite element model of the prototype arch dam was modeled by ANSYS software for empty reservoir and three different reservoir water lengths, and dynamic characteristics of each model were determined analytically. At the end of the study, experimentally and analytically identified dynamic characteristics compared to each other. Also, changes on the natural frequencies along to water length are plotted as graphs. Results suggest that reservoir water complicates the modal behavior of the arch dam significantly.

Water, Energy, and Food Nexus Simulation Considering Inter-Basin Trade

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.190-190
    • /
    • 2016
  • The Water, Energy, and Food (WEF) nexus is an emerging concept for sustainable resources planning and management. The three valuable resources are inevitably interconnected, that is, it takes water to produce energy; it takes energy to extract, treat, and distribute water; and both water and energy are required to produce food. Although it is challenging to fully understand the complicated interdependency, a few studies have been devoted to interpret the concept and develop the assessment tools. The tools were mainly developed for nation-wide simulations without considering inter-basin or inter-state resources trade. This study tries to present an idea to develop and implement the WEF nexus simulation model in regional scale by advancing the existing nation-wide model with additional capability to simulate the inter-basin trade. This simulation could help local planners and engineers to determine optimal policies and infrastructure solutions to reach and ensure local demand satisfaction. The simulation model is implemented in hypothetical areas with different conditions of WEF demands and supplies. Although the inter-basin trade scenarios are simulated manually, it shows that the inter-basin resources trade could enhance the resources security for a longer time period. In future, an optimization model might be developed to provide the automatic calculation to reach optimum amount of WEF for the trade, which can be a helpful tool in decision making process.

  • PDF

Development and application of hydro-economic optimal water allocation and management model (수자원-경제 통합 물 배분 최적화 모형의 개발 및 적용)

  • Jeong, Gimoon;Choi, Sijung;Kang, Doosun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.707-718
    • /
    • 2019
  • The optimal water allocation pursues a reliable and economic supply of water resources to meet various interests in socio-economic-environmental aspects. The global water shortage has intensified due to climate change and population growth with limited water resources. Thus, the water management scheme has shifted to improve water use efficiency by proper demand management and water allocation planning. Here, a hydro-economic water allocation model, called WAMM (Water Allocation and Management Model) is introduced. The WAMM is equipped with an improved linear programming algorithm for optimal water allocation and estimates economic value of water supply as an objective of water

Development of 2-D Water Quality Management Model by Using Reliability Analysis (신뢰도 해석기법을 이용한 2차원 수질관리모형의 개발)

  • Kim, Sang-Ho;Han, Kun-Yeun;Kim, Won;Choi, Hung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.463-474
    • /
    • 2002
  • A two-dimensional water quality management model, Unsteady/Uncertainty Water Quality Model(UUWQM), is developed for a hydrodynamic analysis, an advection-diffusion analysis, and a reliability analysis by using uncertainty technique. The model is applied to the 35 km reach of Sungju to Hyunpoong in the midstream of Nakdong River. 2-D hydrodynamic and water quality analyses are peformed in this reach. Important input variables are decided by sensitivity analysis and verified by Monte Carlo method. Frequency distributions of water quality concentrations are computed from MFOSM method and Monte Carlo method at several locations in this study area. A water quality management system is constructed by calculating the violation probabilities of existing water quality standards.

Seawater Intrusion due to Ground Water Developments in Eastern and Central Cheju Watersheds (중-동 제주 수역의 지하수 개발로 인한 해수침투)

  • 박남식;이용두
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.5-13
    • /
    • 1997
  • The Island of Cheju plans massive ground water development to meet predicted water demand. Effective management of ground water resources requires impact assessment study. Due to the nature of the island, effects of sea water must be considered. In this work, salt water intrusion, due to hypothetical ground water development in Eastern and Central Cheju Watersheds, is predicted using a sharp-interface model. The model considers simultaneously hydrodynamics of both freshwater and saltwater. The hypothetical ground water development was designed such that it follows closely the regional ground water development plan. The numerical model predicted that the saltwater wedge may intude over 1km depending on the location. This observation leaves doubt on impact assement studies based on freshwater-flow only modeling.

  • PDF