• 제목/요약/키워드: Water model

검색결과 13,750건 처리시간 0.036초

SIMULATION OF DAILY RUNOFF AND SENSITIVITY ANALYSIS WITH SOIL AND WATER ASSESSMENT TOOL

  • Lee, Do-Hun;Kim, Nam-Won;Kim, In-Ho
    • Water Engineering Research
    • /
    • 제5권3호
    • /
    • pp.133-146
    • /
    • 2004
  • Soil and water assessment tool (SWAT) was simulated based on the default parameters and a priori soil parameter estimation method in Bocheong watershed of Korea. The performance of the model was tested against the measured daily runoff data for 5 years between 1993 and 1997. The sensitivity analysis of SWAT model parameters was conducted to identify the most sensitive model parameters affecting the model output. The results of SWAT simulation indicate that the overall performance of SWAT in calculating daily runoff is reasonably acceptable. However, there is a problem in estimating the low flow components of streamflow since the low flow components simulated by SWAT are significantly different from the measured low flow. The sensitivity analysis with SWAT points out that soil related parameters are the most sensitive parameters affecting surface and ground water balance components and groundwater flow related parameters exhibit negligible sensitivity.

  • PDF

A STUDY OF SIMULATION AND CONTROL OF PAC COSING PROCESS IN WATER PURIFICATION SYSTEM

  • Nahm, Euisuck;Lee, Subum;Woo, Kwangbang;Han, Taehan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.75-78
    • /
    • 1995
  • In this paper it is concerned to develop control method using jar-test results in order to predict the optimum dosage of coaglant, PAC(PoliAluminum Chloride). Considering the relations with the reactions with the reaction of coagulation and flocculation, the five independent variables ( e, g, turbidity of raw water, water turbidity in flocculators, temperature, pH, and alkalynity) are selected out of parameters and they are put into calculation to develop a neural network model for PAC dosing process in water purification system. This model is utilized to predict optimum dosage of PAC. That is, the optimum dosage of PAC is searched in neural network model for PAC dosing process to minimize the water turbidity in flocculators. This searching is implemented by means of expert heuristics. The efficacy of the proposed contorl schemem and feasibility of acquired neural network model for PAC dosing contorl in water purification system is evaluated by means of computer simulation.

  • PDF

Application of Grid-based Kinematic Wave Storm Runoff Model

  • Kim, Seong-Joon;Kim, Sun-Joo;Chae, Hyo-Seok
    • 한국수자원학회논문집
    • /
    • 제33권S1호
    • /
    • pp.20-27
    • /
    • 2000
  • The grid-based KIneMatic wave STOrm Runoff Model(Kim, 1998; Kim, et al., 1998) which predicts temporal variation and spatial distribution of saturated overland flow, subsurface flow and stream flow was evaluated at two watersheds. this model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each cell by using water balance of hydrologic components. the model programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS (Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture of the watershed.

  • PDF

가상하도 내에서 2차원 흐름분석을 통한 오염원의 유입 지점 탐색 (Detecting Water Pollution Source based on 2D fluid Analysis in Virtual Channel)

  • 연인성;조용진
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.30-35
    • /
    • 2011
  • 2D pollutant transport model was applied to the simulation of contaminant transport in the channel. At first, two kinds of virtual channels having different slopes were designed. The distribution of contaminant, which flows from one of the three drainages to the main channel, was simulated by each 2D model. Concentrations of 745 nodes were converted to input data of neural network model (Multi-perceptron) for training and verification using matrix. The first three cases (Case A-1, A-2, A-3) were used for training Multi-perceptron, the other three cases (Case B-1, B-2, B-3) were used for verification. As a result, Multi-perceptron reasonably divided the cases into the three characteristics which have different contaminant distributions due to the different input point of water pollution source. It can be a useful methodology for the water quality monitoring and backtracking.

Hydraulic fracture simulation of concrete using the SBFEM-FVM model

  • Zhang, Peng;Du, Chengbin;Zhao, Wenhu;Zhang, Deheng
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.553-562
    • /
    • 2021
  • In this paper, a hybrid scaled boundary finite element and finite volume method (SBFEM-FVM) is proposed for simulating hydraulic-fracture propagation in brittle concrete materials. As a semi-analytical method, the scaled boundary finite element method is introduced for modelling concrete crack propagation under both an external force and water pressure. The finite volume method is employed to model the water within the crack and consider the relationship between the water pressure and the crack opening distance. The cohesive crack model is used to analyse the non-linear fracture process zone. The numerical results are compared with experimental data, indicating that the F-CMOD curves and water pressure changes under different loading conditions are approximately the same. Different types of water pressure distributions are also studied with the proposed coupled model, and the results show that the internal water pressure distribution has an important influence on crack propagation.

3차원 수리모델을 이용한 한강 상수원구간 지류영향 분석 및 수질오염사고 시나리오 모의 (Impact Analysis of Tributaries and Simulation of Water Pollution Accident Scenarios in the Water Source Section of Han River Using 3-D Hydrodynamic Model)

  • 김은정;박창민;나미정;박현;김복순
    • 한국물환경학회지
    • /
    • 제34권4호
    • /
    • pp.363-374
    • /
    • 2018
  • The Han River serves as an important water resource for the city of Seoul, Korea and in the neighboring metropolitan areas. From the Paldang dam to the Jamsil submerged weir, the 4 water intake stations that are located for the Seoul metropolitan population were under review in this study. Therefore the water quality management in this section is very important to monitor, analyze and review to rule out any safety concerns. In this study, a 3-D hydrodynamic model, EFDC (Environmental Fluid Dynamics Code), was applied to the downstream of the Paldang Dam in the Han River, which is about 23 km in length, to determine issues related to water resource management. The 3-D grid was composed of 2,168 horizontal grids and three vertical layers. In this case, the hydrodynamic model was calibrated and verified with an observed average daily water surface elevation, water temperature and flow rate data for 3 years (2013~2015). The developed EFDC model proved to reproduce the hydrodynamics of the Han River well. The composition ratios of the noted incoming flows at the monitored intake stations for 3 years and their flow patterns in the river were analyzed using the validated model. It was found that the flow of the Wangsuk Stream depended on the Paldnag dam discharge, and it was noted that the composition ratios of the stream at the intake stations changed accordingly. In a word, the Wangsuk Stream moved mainly along the right bank of the Han River under the condition of a normal dam flow. As can be seen, when the dam discharge rate was low, the incidence of lateral mixing was often seen. The scenario analyses were also conducted to predict the transport of conservative pollutants as in the case of a chemical spill accident. Generally speaking, when scenarios were applied, the arrival time and concentration of pollutants at each intake station was thus predicted.

유전자 알고리즘을 이용한 장·단기 유출모형의 매개변수 최적화 (Parameter Optimization of Long and Short Term Runoff Models Using Genetic Algorithm)

  • 김선주;지용근;김필식
    • 한국농공학회논문집
    • /
    • 제46권5호
    • /
    • pp.41-52
    • /
    • 2004
  • In this study, parameters of long and short term runoff model were optimized using genetic algorithm as a basic research for integrated water management in a watershed. In case of Korea where drought and flood occurr frequently, the integrated water management is necessary to minimize possible damage of drought and flood. Modified TANK model was optimized as a long term runoff model and storage-function model was optimized as a short term runoff model. Besides distinguished parameters were applied to modified TANK model for supplementing defect that the model estimates less runoff in the storm period. As a result of application, simulated long and short term runoff results showed 7% and 5% improvement compared with before optimized on the average. In case of modified TANK model using distinguished parameters, the simulated runoff after optimized showed more interrelationship than before optimized. Therefore, modified TANK model can be applied for the long term water balance as an integrated water management in a watershed. In case of storage-function model, simulated runoff in the storm period showed high interrelationship with observed one. These optimized models can be applied for the runoff analysis of watershed.

소규모 댐의 저수관리 시스템 개발 (Development of Storage Management System for Small Dams)

  • 김필식;김선주
    • 한국농공학회논문집
    • /
    • 제47권3호
    • /
    • pp.15-25
    • /
    • 2005
  • Ninety tow percent of over 1,800 gate controlled dams in Korea are classified as small dams. The primary purpose of these small dams is to supply irrigation water. Therefore, while large dams can store as much as 80 percent of precipitation and thus are efficient to control flood, small dams are often lack of flood control function resulting in increased susceptibility drought and flood events. The purpose of this study is to develope a storage management model for irrigation dams occupying the largest portion of small dams. The proposed Storage Management Model (STMM) can be applied to the Seongju dam for efficient management. Besides, the operation standard is capable of analyzing additional available water, considering water demand and supply conditions of watershed realistically. And the model can improve the flood control capacity and water utilization efficiency by the flexible operation of storage space. Consequently, if the small dams are managed by the proposed Storage management model, it is possible to maximize water resources securance and minimize drought and flood damages.

정유량 막여과 파울링 모델을 이용한 막여과 정수 플랜트 공정 진단 기법 (A process diagnosis method for membrane water treatment plant using a constant flux membrane fouling model)

  • 김수한
    • 상하수도학회지
    • /
    • 제27권1호
    • /
    • pp.139-146
    • /
    • 2013
  • A process diagnosis method for membrane water treatment plant was developed using a constant flux membrane fouling model. This diagnosis method can be applied to a real-field membrane-based water treatment plant as an early alarming system for membrane fouling. The constant flux membrane fouling model was based on the simplest equation form to describe change in trans-membrane pressure (TMP) during the filtration cycle from a literature. The model was verified using a pilot-scale microfiltraton (MF) plant with two commercial MF membrane modules (72 m2 of membrane area). The predicted TMP data were produced using the model, where the modeling parameters were obtained by the least square method using the early plant data and modeling equations. The diagnosis was carried out by comparing the predicted TMP data (as baseline) and real plant data. As a result of the case study, the diagnsis method worked pretty well to predict the early points where fouling started to occur.

상수 원수 수질의 탄산칼슘 포화지수 평가 (Evaluation of Calcium Carbonate Saturation Indices in Water)

  • 황병기
    • 한국산학기술학회논문지
    • /
    • 제8권1호
    • /
    • pp.130-135
    • /
    • 2007
  • 국내 수질의 부식성을 파악하기 위해 RTW 모델과 LPLWIN 모델을 이용하여 탄산칼슘포화지수를 포함한 다양한 지수를 산정하는 절차를 연구하였다. RTW 모델을 이용하여 LI, RI, AI 를 산정할 수 있었고, LPLWIN 모델을 이용하여 LI, LR, CCPP를 산정하였다. 한강 수계와 낙동강 수계를 취수원으로 하는 수돗물 자료를 적용하여 지수값에 근거하여 부식성 여부를 판단하였다. 산정결과에 의하면, 낙동강 수계는 한강수계보다 부식성이 양호한 수질인 것으로 나타났다. 겨울철이 여름철에 비하여 부식성이 큰 것으로 나타나, 온도가 증가할수록 부식성은 감소하는 것으로 조사되었다.

  • PDF