• Title/Summary/Keyword: Water mass analysis

Search Result 1,187, Processing Time 0.03 seconds

What is Happening in the East Sea (Japan Sea)?: Recent Chemical Observations during CREAMS 93-96

  • Kim, Kyung-Ryul;Kim, Kuh
    • Journal of the korean society of oceanography
    • /
    • v.31 no.4
    • /
    • pp.164-172
    • /
    • 1996
  • CREAMS (Circulation Research of the East Asian Marginal Seas) Expeditions have provided a rare opportunity to carry out precise measurements of salinity, temperature and chemical tracers extensively in all major basins of the East Sea (Japan Sea) in 1993-1996 for the first time in more than 60 years since Uda's investigation (Uda, 1934). Studies revealed unequivocal evidence that the East Sea Proper Water (ESPW), previously known as a single homogeneous water mass, is indeed made of several distinct water masses. CREAMS data further confirmed the earlier observations of Gamo et al. (1986) that properties in Deep Waters in the East Sea have been changing during at least the last 25 years. There is evidence, especially from the analysis of the DO profile, that these changes may result from a major change in the mode of deep water formation: from bottom water formation in the past to intermediate/deep water formation in recent years. The causes for these changes are not clear at the present time, but nay include natural variation and may also reflect recent global changes in regional scale. A moving-boundary box model is presented to describe current observations, predicting the turnover time of the total deep and bottom waters to the cold surface waters to be ${\sim}$80 years in 1996.

  • PDF

Investigation of Dynamic Characteristics of the Flooding Water of the Damaged Compartment of an ITTC RoRo-Passenger (ITTC RoRo-Passenger 손상부위 침수유동 특성에 관한 연구)

  • Cho Seok-Kyu;Hong Sa-Young;Kim Yoon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.451-459
    • /
    • 2006
  • When a ship is damaged and flooded, the motion of the damaged ship is significantly influenced by the flooding water dynamics. The flooding water in the damaged ship has been treated as a lumped mass under the quasi-static assumption in most of previous researches. To calculate the motion of damaged ship rigorously, it is necessary to analyze the coupled dynamics of flooding water. In this study, a series of numerical and experimental studies is conducted for the damaged part of ITTC RORO passenger. FLOW3D is used for investigating the feasibility of the state of the art CFD technique. An applicability of the coupled motion analysis of damaged ships can be confirmed by agreement between the numerical results and the model experiments. A CFD technique is considered for the numerical modeling of the dynamics of flooding water.

Dynamic Behavior Analysis of Stiffened Cylindrical Shell Filled with Fluid (내부가 유체로 채워진 보강원통쉘의 동적거동 해석)

  • Youm, Ki-Un;Yoon, Kyung-Ho;Lee, Young-Shin;Kim, Jong-Kiun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2875-2886
    • /
    • 1996
  • This work present the experimental resutls for the free vibration of unstiffened, stiffened cylindrical shell filled with air, half water and full water. The natural frequencies and mode shapes of unstiffened, stiffened cylindrical shell are obtained experimentally also. The natural frequencies of stiffened cylindrical shell were generally highter than those of unstiffened cylindrical shell and natural requencies were decreased as cylindrical shell was filled with water. The effect of circumferential stiffener in the first mode was shown that natural frequency more increased 25% at air environment, 29% at half water environment and 37% at full water than those of unstiffened cylindrical shell, respectively. Also, the natural frequencies were decreased according to the added mass effect of fluid in the shell of unstiffened and stiffened cylindrical shell. The six mode shape results of all cases are simular and given. The natural frequencies are determined for a wide range of parameters : e.g. unstiffened shell, and filled with air, half and full water. The effects of varying the parameters on the free vibration frequencies and mode shapes are discussed.

Analysis of the Possibility of Rapid Quality Appraisal of Water-Reducing Agents Using the Liquid Densimeter and pH Meter (액체 밀도계 및 pH meter기를 이용한 감수제의 신속품질평가 가능성 분석)

  • Kim, Min-Sang;Hyun, Seong-Yong;Baek, Cheol;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.210-211
    • /
    • 2017
  • According to KS F 2560, water-reducing agents used when mixing concrete are to undergo quality evaluation testing slump, air contents, setting time, etc., when delivered from the admixture factory to the ready mixed concrete site. Yet in actual acceptance testing this could be substituted by the score report of the admixture company, in which a possibility of low reliability lies. Therefore this study sought to analyze whether by artificially changing the solid content rate of lignin- and naphthalene-based water-reducing agents and using a liquid densimeter evaluate the quality of the admixture. The results showed that the Type B liquid densimeter was most appropriate and 50cc the most appropriate capacity for the mass cylinder. Also, judging from the changes in density and pH according to the changes in solid content rate, it concludes that a rapid appraisal of the quality of lignin- and naphthalene-based water-reducing agents would be possible using a Type B liquid densimeter.

  • PDF

Stoichiometric Solvation Effects. Product-Rate Correlation for Solvolyses of Phenyl Chloroformate in Alcohol-Water Mixtures

  • 구인선;양기율;강금덕;오혁근;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.520-524
    • /
    • 1996
  • Solvolyses of phenyl chloroformate in water, D2O, CH3OD, 50% D2O-CH3OD, and in aqueous binary mixtures of acetone, ethanol and methanol are investigated at 25.0 ℃. Product selectivities are reported at 25 ℃ for a wide range of ethanol-water and methanol-water solvent compositions. The Grunwald-Winstein plots of first-order rate constants for phenyl chloroformate with YCl (based on 2-adamantyl chloride) show marked dispersions into three separate lines for the three aqueous mixtures with a small m value (m< 0.2) and a rate maximum for aqueous alcohol solvents. Third-order rate constants, kww, kaw, kwa and kaa were calculated from the observed kww and kaa values together with kaw and kwa calculated from the intercept and slope of the plot of 1/S vs. [alcohol]/[water]. The calculated rate constants, kcalc and mol % of ester agree satisfactorily with those of the observed rate constants, kobs and mol % of ester, supporting the stoichiometric solvation effect analysis. The kinetic solvent isotope effects determined in water and methanol are consistent with the proposed mechanism of the general base catalyzed and/or carbonyl addition for phenyl chloroformate solvolyses based on mass law and stoichiometric solvation effect studies.

Analysis of Impact of Climate Change on River Flows in an Agricultural Watershed Using a Semi-distributed Watershed Model STREAM (준분포형 유역모델 STREAM을 이용한 기후변화가 농업유역의 하천유량에 미치는 영향 분석)

  • Jeong, Euisang;Cho, Hong-Lae
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.131-144
    • /
    • 2019
  • Climate Change affects the hydrological cycle in agricultural watersheds through rising air temperature and changing rainfall patterns. Agricultural watersheds in Korea are characterized by extensive paddy fields and intensive water use, a resource that is under stress from the changing climate. This study analyzed the effects of climate change on river flows for Geum Cheon and Eun-San Choen watershed using STREAM, a semi-distributed watershed model. In order to evaluate the performance and improve the reliability of the model, calibration and validation of the model was done for one flow observation point and three reservoir water storage ratio points. Climate change scenarios were based on RCP data provided by the Korea Meteorological Administration (KMA) and bias corrections were done using the Quantile Mapping method to minimize the uncertainties in the results produced by the climate model to the local scale. Because of water mass-balance, evapotranspiration tended to increase steadily with an increase in air temperature, while the increase in RCP 8.5 scenario resulted in higher RCP 4.5 scenario. The increase in evapotranspiration led to a decrease in the river flow, particularly the decrease in the surface runoff. In the paddy agricultural watershed, irrigation water demand is expected to increase despite an increase in rainfall owing to the high evapotranspiration rates occasioned by climate change.

Dynamic behavior of intake tower considering hydrodynamic damping effect

  • Uddin, Md Ikram;Nahar, Tahmina Tasnim;Kim, Dookie;Kim, Kee-Dong
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.355-367
    • /
    • 2022
  • The effect of hydrodynamic damping on intake tower is twofold: one is fluid damping and another is structural damping. Fluid damping can be derived analytically from the governing equation of the fluid-structure-interaction (FSI) problem which yields a very complicated solution. To avoid the complexity of the FSI problem water-tower system can be simplified by considering water as added mass. However, in such a system a reconsideration of structural damping is required. This study investigates the effects of this damping on the dynamic response of the intake tower, where, apart from the "no water (NW)" condition, six other cases have been adopted depending on water height. Two different cross-sections of the tower are considered and also two different damping properties have been used for each case as well. Dynamic analysis has been carried out using horizontal ground motion as input. Finally, the result shows how hydrodynamic damping affects the dynamic behavior of an intake tower with the change of water height and cross-section. This research will help a designer to consider more conservative damping properties of intake tower which might vary depending on the shape of the tower and height of water.

Analysis of Volatile Organic Compounds in Water by Modified Injection Mode for Purge & Trap-GC/MS Method (Purge & Trap-GC/MS 분석법의 주입방식 개선에 의한 물 중의 휘발성 유기물 분석)

  • Jeon, Chi Wan;Lee, Sang Hak;Eum, Chul Hun
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.8
    • /
    • pp.635-642
    • /
    • 1995
  • Improved sample introduction system has been investigated for the determination of volatile organic compounds in water using a purge & trap preconcentration apparatus and a capillary gas chromatography/mass spectrometry. The present limitations associated with the moisture control module and cryorefocusing system suggested by EPA were discussed. To solve the problems such as improper separation of peaks due to the adsorption of water and contamination of purge & trap system, a more efficient connection system between the purge & trap apparatus and the gas chromatograph was introduced and the optimum operational conditions were suggested. A carbopack B/carboxen 1000 and 1001 trap was used for the purge & trap procedure and a custom made crosslinked dimethyldiphenylpolysiloxane capillary column was used for the separation of compounds. Accuracy and precision of the method suggested in this report were examined and the method detection limit of each compound was proposed for the simultaneous determination of 54 volatile organic compounds in water.

  • PDF

Quality Analysis for Recycle of the Drained Soybean Boiling Water Discarded in the Mass Production of Fermented Soy Foods (장류식품 대량제조시 폐기되는 콩 삶은 물의 재활용을 위한 품질특성 분석)

  • Song, Hyo-Nam
    • Korean journal of food and cookery science
    • /
    • v.29 no.5
    • /
    • pp.525-531
    • /
    • 2013
  • Nutritional components and quality characteristics of drained soybean boiling water(DBW), which is discarded in the mass production of fermented soy foods, were compared with raw soybean(Control) and Cheonggukjang(CGJ) to provide the basic data for its recycle. The contents of moisture, crude protein, crude lipid and crude ash of DBW were shown as 87%, 2.2%, 0.15% and 1.42%, respectively. Decreased total amino acid of 1,677.8 mg/100g in DBW was comparable with 29,051.1 mg/100g in control, however, there was no great difference in the proportion of essential amino acid to the total. While the total sugar contents were decreased in both DBW and CGJ with 8.39% and 7.17% each from the control of 11.50%, the reducing sugars were increased with higher amount of 6.44% in CGJ and 8.30% in DBW than 5.60% in control. pH of DBW was lower than both of the control and CGJ. Hunter's color values revealed the increase of redness(a value) and yellowness(b value) of DBW and CGJ suggesting that Maillard reaction products were produced by the heating and fermentation process. Polyphenol compounds were highly abundant in CGJ of 0.74 tannic acid equivalent(mg/g) followed by similar low amounts of 0.33 and 0.29 tannic acid equivalent(mg/g) in DBW and control, respectively. Antioxidative activity determined by Electron Donating Ability(%) using DPPH radical showed that CGJ, of which polyphenols were the highest, has the strongest electron donating ability with the lowest $EC_{50}$ value of 5.91 mg/mL. DBW was much lower but similar with the control. From the above results the drained soybean boiling water was shown to have many nutritional and functional components as much as soybean, therefore, it could be a potent reusable food material.

Advanced Analytical Techniques for Dissolved Organic Matter and Their Applications in Natural and Engineered Water Treatment Systems (최근 용존 유기물 분석 기법 및 자연환경과 수 처리 시스템 내 활용방안)

  • Lee, Yun Kyung;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.31-42
    • /
    • 2022
  • Dissolved organic matter (DOM), which changes according to various factors, is ubiquitously present from natural environments to engineered treatment systems. Only limited information is available regarding the environmental functions of DOM after bulk analyses are only applied for characterization. In this paper, latest DOM analytical techniques are briefly introduced, which include fluorescence excitation-emission matrix with parallel factor analysis (EEM-PARAFAC), size-exclusion chromatography with an organic carbon detector (SEC-OCD), carbon/nitrogen stable-isotope ratio, and Fourier transform-ion cyclotron resonance-mass spectroscopy (FT-ICR-MS). Recent examples of using advanced analyses to interpret the phenomena associated with DOM occurring in natural and engineered systems are presented here. Through EEM-PARAFAC, different components like protein-like, fulvic-like, and humic-like can be identified and tracked individually through the investigated systems. SEC-OCD allows researchers to quantify different size fractions. FT-ICR-MS provides thousands of molecular formulas present in bulk DOM samples. Lastly, carbon/nitrogen stable-isotope ratio offers reasonable tools for tracking the sources in environments. We also discuss the advantages and weakness of the above-mentioned characterizing tools. Specifically, they focus on single environmental factors (different sourced-DOM and interaction of sediment-pore water) or simple changes after individual treatment processes. Through collaboration with the advanced techniques later, they help the researchers to better understand environmental behaviors in aquatic systems and serve as essential tools for addressing various pending problems associated with DOM.