• Title/Summary/Keyword: Water mass

Search Result 3,711, Processing Time 0.028 seconds

Device Development of Mixture Concentration of Ethylene Glycol Antifreeze Coolant for Vehicles (자동차 에틸렌글리콜 부동액의 혼합 농도 측정 장치 개발)

  • Lee, Dae-Woong;Lee, Eun-Woung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.331-336
    • /
    • 2016
  • This study presents a coolant density calculation device and its corresponding method by using a mass flowmeter and the LabVIEW program. The method can be easily measured with a mixture of coolant and by calculating the percentage of ethylene-glycol without additional investment. The cooling water is very important in a vehicle to protect the engine, and the cooling performance is affected by the mixture concentration and coolant density. The coolant density calculation device measures the mixed concentration in the anti-freeze cooling mixture made from distilled water and ethylene-glycol in real time with the mass flowmeter that is commonly attached to the radiator or heater core. The calculation program for the mixture concentration percentage was developed using the LabVIEW software. The correlation between experimental results and the calculation was conducted for a range of temperature from 40 to $90^{\circ}C$ and by varying the mixture ratio of distilled water and ethylene-glycol. As a result, the anti-freeze coolant concentration in the volume percentage is able to monitor the coolant density in a timely basis by implementing a mixture concentration calculation program without the need for additional equipment investment. The results of the calculation for the mixture concentration level show a maximum 2.7% deviation compared to the experimental results.

Numerical Analysis of the Heat and Mass Transfer in a Fin Tube Type Adsorber (핀튜브형 흡착탑에서 열 및 물질전달 수치해석)

  • Kwon, Oh Kyung;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.457-463
    • /
    • 2013
  • Nowadays, adsorption chillers have been receiving considerable attention, as they are energy saving and environmentally benign systems. A fin tube type heat exchanger in which adsorption/desorption takes place is required with more compact size. The adsorption chiller is expected to have high energy efficiency in utilizing the waste heat exhausted from a process. The objectives of this paper are to scrutinize the effect of design parameters on the adsorption performance, especially the fin pitch of the fin tube, and to develop an optimal design fin tube heat exchanger in a silica gel/water adsorption chiller. From the numerical results, the fin pitch of 2.5 mm shows the highest adsorption rate, compared to other fin pitches, such as 5 mm, 7.5 mm and 10mm. Also, the adsorption rate is affected by the cooling water and hot water temperature.

Investigation on Dissolution and Removal of Adhered LiCl-KCl-UCl3 Salt From Electrodeposited Uranium Dendrites using Deionized Water, Methanol, and Ethanol

  • Killinger, Dimitris Payton;Phongikaroon, Supathorn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.549-562
    • /
    • 2020
  • Deionized water, methanol, and ethanol were investigated for their effectiveness at dissolving LiCl-KCl-UCl3 at 25, 35, and 50℃ using inductively coupled plasma mass spectrometry (ICP-MS) to study the concentration evolution of uranium and mass ratio evolutions of lithium and potassium in these solvents. A visualization experiment of the dissolution of the ternary salt in solvents was performed at 25℃ for 2 min to gain further understanding of the reactions. Aforementioned solvents were evaluated for their performance on removing the adhered ternary salt from uranium dendrites that were electrochemically separated in a molten LiCl-KCl-UCl3 electrolyte (500℃) using scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Findings indicate that deionized water is best suited for dissolving the ternary salt and removing adhered salt from electrodeposits. The maximum uranium concentrations detected in deionized water, methanol, and ethanol for the different temperature conditions were 8.33, 5.67, 2.79 μg·L-1 for 25℃, 10.62, 5.73, 2.50 μg·L-1 for 35℃, and 11.55, 6.75, and 4.73 μg·L-1 for 50℃. ICP-MS analysis indicates that ethanol did not take up any KCl during dissolutions investigated. SEM-EDS analysis of ethanol washed uranium dendrites confirmed that KCl was still adhered to the surface. Saturation criteria is also proposed and utilized to approximate the state of saturation of the solvents used in the dissolution trials.

A Study on the Development of Water Quality Forecasting System in Upstream of Paldangdam (팔당댐 상류의 수질예보시스템 개발에 관한 연구)

  • Choi, Nam-Jeong;Seo, Il-Won;Kim, Young-Han;Lee, Myong-Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1387-1391
    • /
    • 2007
  • In this study, water quality prediction that is necessary to water quality forecasting system is performed using 2-D river analysis models RMA-2 and RAM4. RAM4 is suitable to water quality forecasting system cause it is possible to put in the pollutants as a mass type boundary condition. Instant injections of pollutants at Yongdamdaegyo Bridge in Namhangang River are simulated and the behavior of pollutant cloud is observed. The effects of water quality accident to Paldang 2 water intake plants in Paldangho Lake is analyzed with time variation. And extra flow simulation is performed for mitigation of pollution. Several cases of water quality forecasting system at home and abroad are investigated and the direction of water quality forecasting system is presented.

  • PDF

Influence of fracture characters on flow distribution under different Reynold numbers

  • Wang, Jing;Li, Shu-Cai;Li, Li-Ping;Gao, Cheng-Lu
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.187-193
    • /
    • 2018
  • Water inrush through the destruction of water resisting rock mass structure was divided into direct water inrush, key block water inrush and splitting water inrush. In the direct water inrush, the Reynolds numbers has a significant effect on the distribution of the water flow and vortex occurred in the large Reynolds numbers. The permeability coefficient of the fracture is much larger than the rock, and the difference is between 104 and 107 times. The traditional theory and methods are not considering the effect of inertia force. In the position of the cross fracture, the distribution of water flow can only be linearly distributed according to the fracture opening degree. With the increase of Reynolds number, the relationship between water flow distribution and fracture opening is studied by Semtex.

Behaviors of Metals in the Settling Particles in the Bransfield Strait, Antarctica (남극 브랜스필드 해협에서 침강입자의 금속원소 특성)

  • Kim, Dong-Seon;Kim, Dong-Yup;Kim, Young-June;Kang, Young-Chul;Shim, Jeong-Hee
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.41-52
    • /
    • 2003
  • Sediment trap samples were collected to find out characteristic behaviors of metals in the settling particles by using time-series sediment traps at 678m and 1678m water depths in the Bransfield Strait from December 27th, 1999 to December 26th, 2000. Total mass fluxes at the intermediate water depth (678m water depth) were high in the austral summer and low in the austral winter, whereas at the deep water depth (1678m water depth) they showed high values in both the summer and winter. Total mass fluxes were generally higher in the deep water depth than in the intermediate water depth, which indicates that a substantial amount of sediments are laterally transported by strong currents into the deep basin from the shallow water depths. Aluminium contents also showed large seasonal variations with high values in the winter and low values in the summer. On the contrary, organic carbon contents were high in the summer and low in the winter. Al contents were negatively correlated with organic carbon contents, which may be ascribed that detrital particles are diluted by organic matter produced by phytoplankton in the surface waters. Metals measured in this study exhibited three characteristic behaviors; 1) a positive correlation with Al-Ti, Fe, Mn, V, Co, and Ba, 2) a negative correlation with Al-Cd and Zn, 3) no relationship with Al-Sr, Cu, Cr, Ni. Terrestrial materials may act as a major source fer metals that are positively correlated with Al, and organic matter may be a major source for metals that are negatively correlated with Al. Enrichment factor (EF) of Fe, Mn, Ba, Vi Co, Sr, Cr, and Ni ranged from 0.5 to 1.5, whereas EF of Zn, Cu, and Cd showed much higher values than 1.

Characteristics of Non-point Pollutants from the Road Runoff (2): Heavy Metals and Pathogens (도로노면 유출수의 비점오염원 배출 특성(2): 중금속 및 병원성 미생물)

  • Park, Sangwoo;Oh, Jeill;Choi, Younghwa;Kim, Jonghwa;Ha, Jaewon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.235-242
    • /
    • 2007
  • Road runoff water includes various heavy metals (zinc, Zn; lead, Pb; copper, Cu; chrome, Cr; cadmium, Cd; etc.) and pathogens (E-coli and coliform). Since these pollutants are significantly harmful to human beings and have negative impact on water streams, numerous studies have been conducted to determine the characterization of these non-point pollutants from road runoff water. However, since these non-point pollutant concentrations vary depending on road traffic, road construction, and road maintenance, measurement of pollutant loadings in different site is necessary to estimate the effect of road runoff water on drinking water source. The objective of this study was to examine the quality of road runoff water from a city bridge in Seoul, Korea. This study was conducted for two years to assess annual discharge pollution loads. In this study, five key heavy metals (Zn, Pb, Cu, Cr, and Cd) and two pathogens (E-coli and coliform) were measured at 18 different events. The pollutant load mass transported was always higher than the corresponding runoff volume for Zn, Cu, and Cd, while Pb and Cr showed similar values between the load mass transported and the corresponding runoff volume. The event mean concentrations were Zn (0.908 mg/L), Pb (0.092 mg/L), Cu (0.141 mg/L), Cr (0.023 mg/L), and Cd (0.006 mg/L). Like Zn, Cu, and Cd, E-coli and coliform values (relatively high in Summer and Fall) are higher at the beginning of each event and decrease afterwards.

Effect of Operating Condition of Airblast Atomizer on Twin spray characteristics and interaction (공기충돌형 연료분사장치의 운용조건이 이중분무특성과 간섭효과에 미치는 영향)

  • Park, S.G.;Han, J.S.;Kim, Y.;Park, J.B.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.9-14
    • /
    • 1999
  • The effect of operating condition was studied experimently on the characteristics of twin sprays ejected from two airblast atomizers, within the range of the mass air-fuel ratio 1.36∼3.54. Water and nitrogen gas were used as test fluids for the experiments. Spray characteristics of liquid spray were measured with measurement of mass distribution and instantaneous image of the spray cone. Experimental results show that the maximum specify of the distribution were lowered but distributed over the larger area when the ROA ratio increased, Center of mass position did not change with increasing water mass flow, Increase of the nozzle distance has an small effect on mass distribution of interaction area but distributed over the larger area. It was also conformed that the effect of interaction near central point of collision decreased with the increase of the ROA ratio on interaction area from comparison using superposition method

  • PDF

The Effect of Rock Joints and Ground Water on the Thermal Flow through Rock Mass (절리 및 지하수가 암반의 열전파 특성에 미치는 영향)

  • 박연준;유광호;신희순;신중호
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.220-228
    • /
    • 2002
  • Thermal flow through jointed rock mass was analyzed by numerical methods. The effect of a single set of joints on the heat conduction was analyzed by one-dimensional model and compared with the analytical solution. When a joint is completely dry, the joint behaves as a thermal break inducing jumps in temperature distribution even at steady state. Therefore when joints are completely dry, individual joint has to be taken into consideration to get a good result. When joints are partially or fully saturated, the thermal conductivity of the joints increases drastically and the jumps in temperature distribution become less severe. Therefore the effect of joint in heat conduction can be well absorbed by continuum anisotropic model whose thermal properties represent overall thermal properties of the intact part and the discontinuities. Since the effect of joints becomes less important as the degree of the saturation increases, the overall thermal response of the rock mass also becomes close to isotropic. Therefore it can be concluded that a great effort has to be made to obtain a precise in-situ thermal properties in order to get a good prediction of the thermal response of a jointed rock mass.

Flow Characteristics of Central-Driven Ejector with Design Parameters (중앙구동 이젝터의 설계변수에 따른 유동특성)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.645-651
    • /
    • 2015
  • The objective of this study is to experimentally investigate the effect of design parameter on the mass ratio of a central-driven ejector. The design parameters are the primary nozzle area and distance ratios, diffuser exit-area ratio and mixing-tube length ratio. The experimental setup was an open-loop continuous circulation system which has a movable nozzle ejector, an electric motor-pump, a water tank, a control panel and high-speed camera unit. We calculated the mass ratio using the measured primary and suction-flow rates with the experimental parameter of primary water-flow rate or pressure. The results showed that the mass ratio increased with the primary nozzle distance ratio and mixing tube length ratio, while the mass ratio decreased with the primary nozzle-area ratio and diffuser exit-area ratio.