• Title/Summary/Keyword: Water main

Search Result 4,639, Processing Time 0.029 seconds

Numerical modeling of coupled structural and hydraulic interactions in tunnel linings

  • Shin, J.H.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Tunnels are generally constructed below the ground water table, which produces a long-term interaction between the tunnel lining and the surrounding geo-materials. Thus, in conjunction with tunnel design, the presence of water may require a number of considerations such as: leakage and water load. It has been reported that deterioration of a drainage system of tunnels is one of the main factors governing the long-term hydraulic and structural lining-ground interaction. Therefore, the design procedure of an underwater tunnel should address any detrimental effects associated with this interaction. In this paper an attempt to identify the coupled structural and hydraulic interaction between the lining and the ground was made using a numerical method. A main concern was given to local hindrance of flow into tunnels. Six cases of local deterioration of a drainage system were considered to investigate the effects of deterioration on tunnels. It is revealed that hindrance of flow increased pore-water pressure on the deteriorated areas, and caused detrimental effects on the lining structures. The analysis results were compared with those from fully permeable and impermeable linings.

Influences of Climate Factors and Water Temperature in Squid Spawning Grounds on Japanese Common Squid (Todarodes pacificus) Catches in the East (Japan) Sea

  • Lee, Chung-Il
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.150-158
    • /
    • 2007
  • Data on squid catches, water temperature, and climatic factors collected for the Northwest and subtropical North Pacific were analyzed to examine the influence of oceanic and climatic conditions in spawning grounds on catches of Japanese common squid, Todarodes pacificus, in the East (Japan) Sea. The main spawning ground was divided into four sub-areas: the South Sea of Korea (R1), the southern waters off Jeju, Korea (R2), the southwestern part of Kyushu, Japan (R3), and the northern part of Okinawa, Japan (R4). Interannual and decadal fluctuations in water temperatures correlated well with squid catches in the East/Japan Sea. In particular, water temperatures at a depth of 50 to 100 m in sub-areas R3 and R4 showed higher correlation coefficients (0.54 to 0.59, p<0.01) in relation to squid catches in the East/Japan Sea than for R1 and R2, which had correlation coefficients of 0.40 or less (p>0.05). Air temperature and wind velocity fluctuations in each sub-area are correlated with water temperature fluctuations and were closely connected with variations in the surface mixed layers. Water, air temperatures and wind velocities at the main spawning grounds are linked to the Southern Oscillation Index (SOI) with higher signals in the ca. 2-4-year band. Strong changes in a specific band and phase occurred around 1976/77 and 1986/87, coincident with changes in squid catches.

Cosmetic Emulsions: Stabilization by Particles (화장품 에멀젼: 입자에 의한 안정화)

  • Cho, Wan-Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • The preparation and properties of emulsions stabilized by the adsorption of solid particles at the oil-water interface are reviewed. Comparison is made with the behaviour of surfactant-stabilized emulsions. Many of the properties of Pickering emulsions are attributed to the large free energy of adsorption for particles. The main differences is due to the irreversible adsorption of particles to the interface. Phase inversion from w/o (water-in-oil) to o/w (oil-in-water) can be brought by increasing the volume fraction of water. Hydrophilic particles tend to form o/w emulsion whereas hydrophobic particles form w/o emulsion. The contact angle at the oil-water interface is main parameter to decide the emulsion type. The aspects of stability of Pickering emulsions are in contrast to general emulsions in some points. The possibility using Pickering emulsions for cosmetics is also proposed.

Removal of Methylene blue from saline solutions by adsorption and electrodialysis

  • Lafi, Ridha;Mabrouk, Walid;Hafiane, Amor
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.139-148
    • /
    • 2019
  • In this study, the removal of MB from saline solutions was evaluated by two methods by adsorption and electrodialysis; the adsorption of the mixture dye/salt on dried orange peel waste (OPW) was studied in batch method. In this study the biosorption of cationic dye by OPW was investigated as a function of initial solution pH, and initial salt (sodium chloride) concentration. The maximal dye uptake at $pH{\geq}3.6$ in the absence and in the presence of salt and the dye uptake diminished considerably in the presence of increasing concentrations of salt up to 8 g/L. The Redlich Peterson and Langmuir were the most suitable adsorption models for describing the biosorption equilibrium data of the dye both individually and in salt containing medium. As well, this work deals with the electrodialysis application to remove the dye. Synthetic solutions were used for the investigation of the main operational factors affecting the treatment performance; such as applied voltage, pH, initial dye concentration and ionic strength. The experimental results for adsorption and electrodialysis confirmed the importance of electrostatic interactions on the dye. The electrodialysis process with standard ion exchange membranes enabled efficient desalination of cationic dye solutions; there are two main factors in fouling: electrostatic interaction between cations of dyes and the fixed charged groups of the CEM, and affinity interactions.

Estimation of the Virtual Water Consumption for Food Consumption and Calorie Supply (식품 소비 및 칼로리 공급 변화에 따른 가상수 소비량의 변화 분석)

  • Lee, Sang-Hyun;Choi, Jin-Yong;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.77-86
    • /
    • 2015
  • The agricultural water management generally has focused on water resources for crop production but it could be affected by the food consumption pattern. The aim of this study is to estimate virtual water consumption for food consumption and calorie supply using the water footprint and virtual water concept. In addition, we estimated the virtual water requirements for increasing the food and calorie self-sufficiency adjusted by the government for food security. About $330.0m^3/cap/yr$ of virtual water was consumed for the main foods consumption in 1985, and it was increased to $450.0m^3/cap/yr$ in 2010. The rate of virtual water consumption by meats consumption was 28 % in 1985 but it was increased to 54 % in 2010. In other words, the total virtual water consumption by foods consumption was increased from 1985 to 2010 with the high rate of meats consumption. The average $1.29m^3$ of virtual water was consumed for supplying 1 calorie per capita in 2010 but about $10.1m^3/cal$ of virtual water was consumed by only bovine meats consumption. The food self-sufficiency is the main factor for food security in Korea. About $46.5Mm^3$ and $393.9Mm^3$ of virtual water were required in order to increase the food and calorie self-sufficiency of wheat by 1 % individually. This study showed the water consumption was related to food consumption and calorie supply pattern, and these results could be used as the indices for the agricultural water management considering the change of eating habit and food security.

Improvement of Channel Water Quality Module in SWAT (SWAT 모형의 하도 수질 모듈의 개선)

  • Kim, Nam-Won;Shin, Ah-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.902-909
    • /
    • 2009
  • With various reservoirs, dams and reduction of water velocity in downstream, rivers in Korea often have characteristics of accumulation of pollutants. Therefore, the main focus of water quality modeling in Korea needs to be shifted from DO to algae and organic matter. Moreover the structures of water quality models should be modified to have capability of simulating BOD which is a key factor of total water pollution load management in Korea as laboratory experiment BOD (Bottle $BOD_5$). In the SWAT model which is one of the widely used water quality models in Korea, the channel water quality module is using main algorithm of the QUAL2E model which has limitations in simulating algae, organic matter and Bottle BOD5 etc. To overcome this hindrance, in this study, the improved channel water quality module of the SWAT model (Q-SWAT) was proposed by linking the algorithms of the QUAL-NIER model which was developed based on the QUAL2E model to the SWAT model. The algorithms estimating the increase of internal organic matter by fractionization algal metabolism process and calculating Bottle $BOD_5$ were added and the results of proposed model were compared to those of the original SWAT model. The results of comparison test are showing that more accurate BOD values can be obtained with the Q-SWAT model and it is anticipated that the Q-SWAT model can be used as an effective tool of decision support through the water quality simulation and long term pollution source analysis.

Evaluation of Attainment Ratio on Water Quality Goal of the Mid-watershed Representative Station (중권역 대표지점의 목표수질 달성도 평가 - TOC를 중심으로 -)

  • Lee, Jaeho;Lee, Seunghyun;Lee, Soohyung;Lee, Jaekwan
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.525-530
    • /
    • 2017
  • The attainment ratios of the water quality goals of the 114 mid-watershed representative stations, examined during the period2011 to 2015, were evaluated in the study. Of the four major river basins, the attainment ratio on water quality goal of the Geum River basin turned out to be the lowest. As a result of formal evaluation of the attainment ratios of BOD, COD and TOC, it was found that the attainment ratio of COD was much lower than that of BOD and TOC (I a circumstance thought to be caused by the higher COD/BOD and COD/TOC ratios of the water quality of the river than those of the environmental water quality standard). As well, higher COD/BOD and COD/TOC of wastewater discharged from point and non-point sources (other than those of the environmental water quality standards) might possibly represent one of the reasons. We also compared attainment ratio between the main stream and tributaries, which indicated that the higher attainment ratio was present in the main stream. The attainment ratio is also documented as more significant in the winter season than the summer season, possibly due to the contribution of non-point pollutants swept in by rain during the summer season during documented periods of high precipitation. Thus, water quality management in summer season and improvement of water quality of the tributaries might be important as a means of increasing attainment ratio on water quality goal.