• 제목/요약/키워드: Water level prediction

검색결과 343건 처리시간 0.022초

수치 예보를 이용한 구름 예보 (Cloud Forecast using Numerical Weather Prediction)

  • 김영철
    • 한국항공운항학회지
    • /
    • 제15권3호
    • /
    • pp.57-62
    • /
    • 2007
  • In this paper, we attempted to produce the cloud forecast that use the numerical weather prediction(NWP) MM5 for objective cloud forecast. We presented two methods for cloud forecast. One of them used total cloud mixing ratio registered to sum(synthesis) of cloud-water and cloud-ice grain mixing ratio those are variables related to cloud among NWP result data and the other method that used relative humidity. An experiment was carried out period from 23th to 24th July 2004. According to the sequence of comparing the derived cloud forecast data with the observed value, it was indicated that both of those have a practical use possibility as cloud forecast method. Specially in this Case study, cloud forecast method that use total cloud mixing ratio indicated good forecast availability to forecast of the low level clouds as well as middle and high level clouds.

  • PDF

LSTM 모형을 이용한 지하수위 예측 평가 (Evaluating the groundwater prediction using LSTM model)

  • 박창희;정일문
    • 한국수자원학회논문집
    • /
    • 제53권4호
    • /
    • pp.273-283
    • /
    • 2020
  • 지하수자원의 변동성 및 취약성 평가를 위한 지하수위의 정량적 예측은 매우 중요하다. 이를 위해 다양한 시계열 분석 기법과 머신러닝 기법 등이 사용되어 왔다. 본 연구에서는 제주도 한경면 지역에 설치된 11개 지하수위 관측정의 일 수위자료를 대상으로 인공신경망 알고리즘의 하나인 Long short term memory (LSTM)에 기반한 예측 모델을 개발하였다. 제주도의 지하수위는 일반적으로 조석에 의한 자기상관성이 높고 강수에 의한 영향이 잘 반영되는 것으로 알려져 있다. 이러한 자료 특성을 고려한 입출력 텐서를 구성하기 위해 각 지하수 관측정의 수위변동 관측 자료와 같은 기간의 강수량 자료를 추가 입력자료로 선택하였다. 4계절을 나타내는 초기 365일 자료를 이용하여 LSTM 모델을 학습시켰으며 나머지 자료를 검증에 활용하여 예측 모델의 적합도를 평가하였다. 모델의 개발은 Python기반 딥러닝 프레임워크인 Keras를 이용하였고, 학습속도를 향상시키고자 NVIDIA CUDA 아키텍처를 도입하였다. LSTM 모델을 이용하여 지하수위 변화를 학습시키고 검증한 결과 결정계수가 평균 0.98로 나타나 개발된 예측모델의 적합성이 매우 높은 것으로 확인되었다.

CAT을 이용한 저수지 수위 예측 (Prediction of Reservoir Water Level using CAT)

  • 장철희;김현준;김진택
    • 한국농공학회논문집
    • /
    • 제54권1호
    • /
    • pp.27-38
    • /
    • 2012
  • This study is to analyse the hydrological behavior of agricultural reservoir using CAT (Catchment hydrologic cycle Assessment Tool). The CAT is a water cycle analysis model in order to quantitatively assess the characteristics of the short/long-term changes in watershed. It supports the effective design of water cycle improvement facilities by supplementing the strengths and weaknesses of existing conceptual parameter-based lumped hydrologic models and physical parameter-based distributed hydrologic models. The CAT especially supports the analysis of runoff processes in paddy fields and reservoirs. To evaluate the impact of agricultural reservoir operation and irrigation water supply on long-term rainfall-runoff process, the CAT was applied to Idong experimental catchment, operated for research on the rural catchment characteristics and accumulated long term data by hydrological observation equipments since 2000. From the results of the main control points, Idong, Yongdeok and Misan reservoirs, the daily water levels of those points are consistent well with observed water levels, and the Nash-Sutcliffe model efficiencies were 0.32~0.89 (2001~2007) and correlation coefficients were 0.73~0.98.

Water table: The dominant control on CH4 and CO2 emission from a closed landfill site

  • Nwachukwu, Arthur N.;Nwachukwu, Nkechinyere V.
    • Advances in environmental research
    • /
    • 제9권2호
    • /
    • pp.123-133
    • /
    • 2020
  • A time series dataset was conducted to ascertain the effect of water table on the variability in and emission of CH4 and CO2 concentrations at a closed landfill site. An in-situ data of methane/carbon dioxide concentrations and environmental parameters were collected by means of an in-borehole gas monitor, the Gasclam (Ion Science, UK). Linear regression analysis was used to determine the strength of the correlation between ground-gas concentration and water table. The result shows CH4 and CO2 concentrations to be variable with strong negative correlations of approximately 0.5 each with water table over the entire monitoring period. The R2 was slightly improved by considering their concentration over single periods of increasing and decreasing water table, single periods of increasing water table, and single periods of decreasing water table; their correlations increased significantly at 95% confidence level. The result revealed that fluctuations in groundwater level is the key driving force on the emission of and variability in groundgas concentration and neither barometric pressure nor temperature. This finding further validates the earlier finding that atmospheric pressure - the acclaimed major control on the variability/migration of CH4 and CO2 concentrations on contaminated sites, is not always so.

대청댐 방류에 따른 금강 하류부의 홍수추적 (A Flood Routing for the Downstream of the Kum River Basin due to the Teachong Dam Discharge)

  • 박봉진;강권수;정관수
    • 한국수자원학회논문집
    • /
    • 제30권2호
    • /
    • pp.131-141
    • /
    • 1997
  • 본 연구에서는 저류함수법과 Loopnet(부정류해석모형) 모형으로 홍수예측 시스템을 구성하여 대청댐의 방루에 따른 하류지역의 홍수영향을 에측하여 보았다. 대청댐 하류부에 지역빈도 분석방법(L-모멘트)으로 강우량을 산정하고, 홍수예측시스템으로 금강 하류부의 홍수추적을 실시하여 빈도별 홍수량을 산정하였다. 또한 대청댐의 방류에 따른 금강 하루 주요지점의 홍수량, 홍수위 및 방류량 도달시간을 산정하여 홍수발생시 대청댐 운영의 지표포 활동할 수 있도록 하였다.

  • PDF

기후 변화에 따른 제주도 표선 유역의 함양률 및 수위변화 예측 (Impact of Climate Change on the Groundwater Recharge and Groundwater Level Variations in Pyoseon Watershed of Jeju Island, Korea)

  • 신에스더;고은희;하규철;이은희;이강근
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.22-35
    • /
    • 2016
  • Global climate change could have an impact on hydrological process of a watershed and result in problems with future water supply by influencing the recharge process into the aquifer. This study aims to assess the change of groundwater recharge rate by climate change and to predict the sustainability of groundwater resource in Pyoseon watershed, Jeju Island. For the prediction, the groundwater recharge rate of the study area was estimated based on two future climate scenarios (RCP 4.5, RCP 8.5) by using the Soil Water Balance (SWB) computer code. The calculated groundwater recharge rate was used for groundwater flow simulation and the change of groundwater level according to the climate change was predicted using a numerical simulation program (FEFLOW 6.1). The average recharge rate from 2020 to 2100 was predicted to decrease by 10~12% compared to the current situation (1990~2015) while the evapotranspiration and the direct runoff rate would increase at both climate scenarios. The decrease in groundwater recharge rate due to the climate change results in the decline of groundwater level. In some monitoring wells, the predicted mean groundwater level at the year of the lowest water level was estimated to be lower by 60~70 m than the current situation. The model also predicted that temporal fluctuation of groundwater recharge, runoff and evapotranspiration would become more severe as a result of climate change, making the sustainable management of water resource more challenging in the future. Our study results demonstrate that the future availability of water resources highly depends on climate change. Thus, intensive studies on climate changes and water resources should be performed based on the sufficient data, advanced climate change scenarios, and improved modeling methodology.

팔당댐 방류량과 황해(서해) 조석영향에 따른 팔당댐 하류부 수위상승도달시간 예측 (A Study on Water Level Rising Travel Time due to Discharge of Paldang Dam and Tide of Yellow Sea in Downstream Part of Paldang Dam)

  • 이정규;이재홍
    • 한국방재학회 논문집
    • /
    • 제10권2호
    • /
    • pp.111-122
    • /
    • 2010
  • 한강의 잠수교와 둔치는 장마철에 큰 홍수가 발생하면 침수가 되기 때문에 시민들의 안전과 편의를 위해 홍수로 인한 침수 발생시간을 예측하는 것은 대단히 중요하다. 본 연구에서는 FLDWAV모형을 이용하여 한강하류부의 팔당댐 방류량과 황해(서해) 조석이 한강하류부 수위에 미치는 영향을 분석하였다. 연구 대상구간은 팔당댐 하류부에서 전류지점까지이며, 조석영향을 고려하기위해 하류경계조건인 전류수위는 팔당댐방류량과 인천조위를 이용한 다중선형회귀분석을 통해 산정된 예측 전류수위를 사용하였다. 본 연구에서는 잠수교와 주요 둔치에서 수위상승도달시간을 산정하였고, 팔당댐 방류유형과 황해조석에 따른 수위상승도달시간을 팔당댐 방류량의 함수인 2차다항식으로 나타냈다.

머신러닝 CatBoost 다중 분류 알고리즘을 이용한 조류 발생 예측 모형 성능 평가 연구 (Evaluation of Multi-classification Model Performance for Algal Bloom Prediction Using CatBoost)

  • 김준오;박정수
    • 한국물환경학회지
    • /
    • 제39권1호
    • /
    • pp.1-8
    • /
    • 2023
  • Monitoring and prediction of water quality are essential for effective river pollution prevention and water quality management. In this study, a multi-classification model was developed to predict chlorophyll-a (Chl-a) level in rivers. A model was developed using CatBoost, a novel ensemble machine learning algorithm. The model was developed using hourly field monitoring data collected from January 1 to December 31, 2015. For model development, chl-a was classified into class 1 (Chl-a≤10 ㎍/L), class 2 (10<Chl-a≤50 ㎍/L), and class 3 (Chl-a>50 ㎍/L), where the number of data used for the model training were 27,192, 11,031, and 511, respectively. The macro averages of precision, recall, and F1-score for the three classes were 0.58, 0.58, and 0.58, respectively, while the weighted averages were 0.89, 0.90, and 0.89, for precision, recall, and F1-score, respectively. The model showed relatively poor performance for class 3 where the number of observations was much smaller compared to the other two classes. The imbalance of data distribution among the three classes was resolved by using the synthetic minority over-sampling technique (SMOTE) algorithm, where the number of data used for model training was evenly distributed as 26,868 for each class. The model performance was improved with the macro averages of precision, rcall, and F1-score of the three classes as 0.58, 0.70, and 0.59, respectively, while the weighted averages were 0.88, 0.84, and 0.86 after SMOTE application.

성층화된 저수지의 방류수 수질예측을 위한 SELECT 모델의 적용성 검토 (Evaluation of SELECT Model for the Quality Prediction of Water Released from Stratified Reservoir)

  • 이흥수;정세웅;신상일;최정규;김유경
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.591-599
    • /
    • 2007
  • The quality of water released from a stratified reservoir is dependent on various factors such as the location and shape of intake facility, structure of reservoir stratification, profile of water quality constituent, and withdrawal flux. Sometimes, selective withdrawal capabilities can provide the operational flexibility to meet the water quality demands both in-reservoir and downstream. The objective of this study was to evaluate the performance of a one-dimensional reservoir selective withdrawal model (SELECT) as a tool for supporting downstream water quality management for Daecheong and Imha reservoirs. The simulated water quality variables including water temperature, dissolved oxygen (DO), conductivity, turbidity were compared with the field data measured in tailwater. The model showed fairly satisfactory results and high reliability in simulating observations. The coefficients of determinant between simulated and observed turbidity values were 0.93 and 0.95 for Daecheong and Imha reservoirs, respectively. The outflow water quality was significantly influenced by water intake level under fully stratified condition, while the effect of intake amount was minor. In conclusion, the SELECT is simple but effective tool for supporting downstream water quality prediction and management for both reservoirs.

Prediction of pollution loads in agricultural reservoirs using LSTM algorithm: case study of reservoirs in Nonsan City

  • Heesung Lim;Hyunuk An;Gyeongsuk Choi;Jaenam Lee;Jongwon Do
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.193-202
    • /
    • 2022
  • The recurrent neural network (RNN) algorithm has been widely used in water-related research areas, such as water level predictions and water quality predictions, due to its excellent time series learning capabilities. However, studies on water quality predictions using RNN algorithms are limited because of the scarcity of water quality data. Therefore, most previous studies related to water quality predictions were based on monthly predictions. In this study, the quality of the water in a reservoir in Nonsan, Chungcheongnam-do Republic of Korea was predicted using the RNN-LSTM algorithm. The study was conducted after constructing data that could then be, linearly interpolated as daily data. In this study, we attempt to predict the water quality on the 7th, 15th, 30th, 45th and 60th days instead of making daily predictions of water quality factors. For daily predictions, linear interpolated daily water quality data and daily weather data (rainfall, average temperature, and average wind speed) were used. The results of predicting water quality concentrations (chemical oxygen demand [COD], dissolved oxygen [DO], suspended solid [SS], total nitrogen [T-N], total phosphorus [TP]) through the LSTM algorithm indicated that the predictive value was high on the 7th and 15th days. In the 30th day predictions, the COD and DO items showed R2 that exceeded 0.6 at all points, whereas the SS, T-N, and T-P items showed differences depending on the factor being assessed. In the 45th day predictions, it was found that the accuracy of all water quality predictions except for the DO item was sharply lowered.