• Title/Summary/Keyword: Water leakage amount

Search Result 67, Processing Time 0.024 seconds

Back Tracing Calculation Method for the Leakage Detection in Water Distribution System (상수관망에서 누수탐지를 위한 역추적계산법)

  • Kwon, Hyuk Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.611-619
    • /
    • 2013
  • In this study, Back Tracing Calculation Method was developed to determine the leakage location and leakage amount. Previously developed determination method of monitoring location and newly developed Back Tracing Calculation Method were applied to the sample pipe network and real size pilot plant. After leakage was assumed in the pilot plant, leakage location and leakage amount could be traced by Back Tracing Calculation Method. From the results, it was found that Back Tracing Calculation Method can be applied for the leakage detection in water distribution system. Furthermore, this method can be applied for the pressure management or leakage detection as a pressure control method in water distribution system.

Analysis of Flow and Economic Benefit Through Water Leakage Detection and Repair (누수탐사에 의한 유량분석 및 보수의 경제적 효과)

  • Lee, Seung-Chul;Lee, Sang-Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 2005
  • Field measurement data on water leakage are not readily available and it causes inaccurate assessment of water demand and poor supply planning. In this study, the procedure for leakage detection and unaccounted water calculation is proposed and applied to a city. The city has suffered from the significant amount of leak water and the financial loss as a result. Measurements were made for pressure and flow at 18 locations before and after the repair. Repair of the leakage increased pressure up to $2.0kgf/cm^2$ and saved 17.1% of water supply from distribution reservoirs. Monetary value of annual water savings for the entire city amounts to 1 billion won. It is believed that leakage detection and data analysis conducted in this study will contribute to the change of current practice and to the establishment of better water supply management system.

Evaluation on the leakage of ground-water through fractured rock under a spillway (여수로 구조물 하부 암반 내 발달한 절리들을 통한 지하수 누수량 분석)

  • Kim, Hyoung-Soo;Lee, Ju-Hyun;Jeong, Ui-Jin;Lee, Joong-Woo
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.129-134
    • /
    • 2006
  • Recently, spillways are need to control stable water level for supporting main dams because of floods by unusual change of weather such as Typhoon Rusa. This study has been focused on the amount of leakage through the rock mass distributed fractures and joints under the opened emergency spillway. It is very important to evaluate the amount of leakage as these affect stability of spillway by interaction between effective stress and pore pressure. The commercial program MAFIC has been used for analyzing groundwater flow in fractured rock mass. The results showed that the values of range, average and deviation of leakage were 2.85∼3.79×10-1, 3.32×10-1 and 1.70×10-2 m3/day/m2 respectively. Secondary, we have estimated the effect of grouting after the transmissivity(Tf) of joint 1 as main pathway of leakage known from above results was changed from 1.78×10-7 to 1.59×10-9 m2/s. The results showed that the values of range, average and deviation of leakage were 7.80×10-4∼1.53×10-3, 1.18×10-3 and 1.32×10-4 m3/day/m2 respectively. As the result, the amount of leakage after grouting has been decreased by a ratio of 1 to 277.

  • PDF

Estimation method of natural rate of rise of leakage in water distribution system (배급수관망에서의 누수복원량 산정방법)

  • Jin, Saemmul;Kim, Kyoungpil;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.299-309
    • /
    • 2019
  • Waterworks facilities inevitably experience some amount of leakage even if there is a lot of investment or state-of-the-art technology that is applied such as DMA(District Metered Area) system construction, leakage detection, repair, pipe rehabilitation, etc. The primary reason is the leakage is naturally restored over time. In the UK, this restoration characteristic is defined as NRR(Natural rate of rise of leakage) and used to decision making for prioritizing active leakage control of DMAs. However, this restoration characteristic is well recognized, but researches on NRR in the water distribution system are insufficient in Korea. In this study, the estimation method of NRR was developed suitable for applicating in Korea considering of SCADA data, water infrastructure, and water usage patterns by modification of the UK's NRR method. The proposed method was applied to 9 DMAs and verified it's applicability by comparing with the other water loss performance indicators. It is expected that the proposed method can be used to support decision making for sustainable NRW(Nor-revenue water) management in the water distribution system.

Leakage experiments and applications of leakage detection algorithm in the pilot plant of water distribution system (상수관망 파일럿플랜트에서의 누수실험 및 누수탐지 알고리즘의 적용)

  • Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.9
    • /
    • pp.609-616
    • /
    • 2017
  • In this study, algorithm for the selecting the optimum monitoring location and leakage detection algorithm based on back tracing calculation method were developed and verified by the experiments in pilot plant of water distribution system. First of all, optimum monitoring locations were selected and pressure changes were measured due to artificial leakage by pressure gauges in pilot plant. Simulations of leakage detection was performed for the verification of back tracing calculation method as a leakage detection method. From the results, it was found that leakage locations and leakage amount were exactly estimated. Various leakage amount from $0.0005m^3/s$ to $0.0018m^3/s$ were reproduced and leakage location was detected by back tracing calculation method. It was verified that back tracing calculation method as a leakage detection method is effective.

Efficient Leakage Estimation of Public Agriculture Groundwater in Jeju Island (제주도 공공 농업용 지하수의 효율적 누수량 산정 연구)

  • Kim, MinChul;Park, WonBae;Kang, BongRae;Kim, JiMyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.1-11
    • /
    • 2020
  • In this study, leakage ratios of Jeju Island's public agricultural groundwater were calculated by utilizing field measurements of groundwater level and surface reservoir water level. The average leakage ratios were 75.6% at groundwater well A and 57.5% at well B, with the ratio inversely proportional to agricultural water usage. The level of agricultural reservoirs varied at constant intervals at night, and the amount of water leakage associated with the variation was estimated as 0.1 - 16.3 ㎥/h. The leakage ratio was also influenced by pipeline length, average slope, and number of farmhouses. Currently, the estimation of agricultural water leakage on Jeju Island is based upon field inspection which is very labor- and cost intensive. The leakage ratio estimated by monitoring the reservoirs associated with the well A and B were 73.3 and 54.7%, respectively, consistent with the values obtained by field measurements.

Evaluation on the leakage of ground-water through fractured rock under a spillway (여수로 구조물 하부 암반 내 발달한 절리들을 통한 지하수 누수량 분석)

  • Kim, Hyoung-Soo;Lee, Ju-Hyun;Jeong, Ui-Jin;Lee, Joong-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.69-74
    • /
    • 2006
  • Recently, spillways are need to control stable water level for supporting main dams because of floods by unusual change of weather such as Typhoon Rusa. This study has been focused on the amount of leakage through the rock mass distributed fractures and joints under the opened emergency spillway. It is very important to evaluate the amount of leakage as these affect stability of spillway by interaction between effective stress and pore pressure. The commercial program MAFIC has been used for analyzing groundwater flow in fractured rock mass. The results showed that the values of range, average and deviation of leakage were $2.85\sim\;3.79\times10^{-1}$, $3.32\times10^{-1}$ and $1.70\times10^{-2}\;m^3/day/m^2$ respectively. Secondary, we have estimated the effect of grouting after the transmissivity$(T_f)$ of joint 1 as main pathway of leakage known from above results was changed from $1.78\times10^{-7}$ to $1.59\times10^{-9}\;m^2/s$. The results showed that the values of range, average and deviation of leakage were $7.80\times10^{-4}\sim1.53\times10^{-3}$, $1.18\times10^{-3}$ and $1.32\times10^{-4}\;m^3/day/m^2$ respectively. As the result, the amount of leakage after grouting has been decreased by a ratio of 1 to 277.

  • PDF

Groundwater Balance in Urban Area (도시지역의 지하수수지)

  • Lee, Seung-Hyun;Bae, Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1553-1560
    • /
    • 2011
  • The study analyzes groundwater balance with regard to the water recharge and discharge which contain urbanization components in Suyeong-gu, Busan. It also verifies the reliability and accuracy improvement on the analysis of the balance. The result of the study is viewed as preliminary data which are useful to develop, utilize and manage groundwater. The average quantity of groundwater recharge is 6,014.1 $m^3$/day in the research area during the last ten year period(from 1998 to 2007). The outflow from drainage areas to rivers and coasts is 149.3 $m^3$/day, the inflow from rivers and coasts to drainage area is 439.9 $m^3$/day. The use of the water is 4,243.0 $m^3$/day. The outflow caused by subway in line No.2 and No.3 through Suyeong-gu and the one by building an underground electric complex is 1,500.0 $m^3$/day. The leakage of water works is 6514.9 $m^3$/day. The inflow and outflow of sewerage is 5082.2 $m^3$/day from groundwater to sewer. The amount of groundwater recharge, the inflow from rivers and coasts to drainage area, and the leakage of water works belong to the amount of groundwater inflow and the total amount is 12,968.9 $m^3$/day. The amount of outflow from drainage area to rivers and coasts, the use of groundwater, outflow by subway and underground electric complex tunnel and the amount of inflow of the water to sewerage belong to the amount of outflow of groundwater and the sum amount is 13,031.5 $m^3$/day. The gap between the amount of inflow and outflow of groundwater is 62.6 $m^3$/day, which is considered to reflect the trend that the short term drop in the amount of rainfall results in the amount of groundwater recharge and that the amount of outflow from drainage area to rivers and coasts decreases.

Sequential optimization for pressure management in water distribution networks

  • Malvin S. Marlim;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.169-169
    • /
    • 2023
  • Most distributed water is not used effectively due to water loss occurring in pipe networks. These water losses are caused by leakage, typically due to high water pressure to ensure adequate water supply. High water pressure can cause the pipe to burst or develop leaks over time, particularly in an aging network. In order to reduce the amount of leakage and ensure proper water distribution, it is important to apply pressure management. Pressure management aims to maintain a steady and uniform pressure level throughout the network, which can be achieved through various operational schemes. The schemes include: (1) installing a variable speed pump (VSP), (2) introducing district metered area (DMA), and (3) operating pressure-reducing valves (PRV). Applying these approaches requires consideration of various hydraulic, economic, and environmental aspects. Due to the different functions of these approaches and related components, an all-together optimization of these schemes is a complicated task. In order to reduce the optimization complexity, this study recommends a sequential optimization method. With three network operation schemes considered (i.e., VSP, DMA, and PRV), the method explores all the possible combinations of pressure management paths. Through sequential optimization, the best pressure management path can be determined using a multiple-criteria decision analysis (MCDA) to weigh in factors of cost savings, investment, pressure uniformity, and CO2 emissions. Additionally, the contribution of each scheme to pressure management was also described in the application results.

  • PDF

A Preliminary Study for the Prediction of Leaking-Oil Amount from a Ruptured Tank (파손된 기름 탱크로부터의 유출양 산정을 위한 기초 연구)

  • Kim Wu-Joan;Lee Young-Yeon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.21-31
    • /
    • 2001
  • When an oil-spilling accident occurs at sea, it is of the primary importance to predict the amount of oil leakage for the swift response and decision-making. The simplest method of oil-leakage estimation is based on the hydrostatic pressure balance between oil inside the tank and seawater outside of leakage hole, that is the so-called Torricelli equilibrium relation. However, there exists discrepancy between the reality and the Torricelli relation, since the latter is obtained from the quasi-steady treatment of Bernoulli equation ignoring viscous friction. A preliminary experiment has been performed to find out the oil-leaking speed and shape. Soy-bean oil inside the inner tank was ejected into water of the outer tank through four different leakage holes to record the amount of oil leakage. Furthermore, a CFD (Computational Fluid Dynamics) method was utilized to simulate the experimental situation. The Wavier-Stokes equations were solved for two-density flow of oil and water. VOF method was employed to capture the shape of their interface. It is found that the oil-leaking speed varies due to the frictional resistance of the leakage hole passage dependent on its aspect ratio. The Torricelli factor relating the speed predicted by using the hydrostatic balance and the real leakage speed is assessed. For the present experimental setup, Torricelli factors were in the range of 35%~55% depending on the aspect ratio of leakage holes. On the other hand, CFD results predicted that Torricelli factor could be 52% regardless of the aspect ratio of the leakage holes, when the frictional resistance of leakage hole passage was neglected.

  • PDF