• 제목/요약/키워드: Water gas shift reactor

검색결과 66건 처리시간 0.029초

연소전 CO2 포집을 위한 수성가스반응과 분리막 공정 특성 (Characteristics of Water Gas Shift and Membrane Process for Pre-combustion CO2 Capture)

  • 김정남;유정균;최수현;백일현
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.21-27
    • /
    • 2016
  • 온실가스로 인한 지구 온난화는 전 세계적인 주요 문제로 인식되고 있으며, 많은 나라들은 $CO_2$ 배출 감축을 위한 많은 노력을 하고 있다. 연소 후, 연소 전, 순산소 연소의 다양한 $CO_2$ 포집 기술들이 개발되고 있으며, 그 중 본 연구에서는 연소 전 $CO_2$ 포집 기술로서 수성가스전환반응기와 기체분리막의 융합 시스템을 고찰하였다. CO 전환율을 높이기 위해 고온 수성가스반응과 저온 수성가스반응이 결합된 2단 WGS 반응기를 사용하였고, 비다공성 Pd/Cu 분리막을 이용하여 수소를 선택적으로 분리하여 $CO_2$를 농축하였다. 연소 전 $CO_2$ 포집에서의 활용을 고려하여 65% CO, 30 % $H_2$, 5% $CO_2$의 기체 혼합물에 대한 하이브리드 시스템의 성능을 CO 전환율과 수소 분리의 측면에서 평가하였다. 공급기체유량 1000ml/min에서 수성가스 전환반응의 운전조건으로 온도는 $200-400^{\circ}C$, 압력은 0-20bar, S/C 비는 2.5-5의 영역에서 성능을 평가하였다. 2단 수성가스전환반응기에서 CO의 전환율은 최고 99.5%이었으며, Pd/Cu 분리막을 통하여 $CO_2$를 83%로 농축시켰다.

가압 유동층 반응기에서 SEWGS 공정을 위한 WGS 촉매의 반응특성 (Reaction Characteristics of WGS Catalyst for SEWGS Process in a Pressurized Fluidized Bed Reactor)

  • 김하나;이동호;이승용;황택성;류호정
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.337-345
    • /
    • 2012
  • To check effects of operating variables on reaction characteristics of WGS catalyst for SEWGS process, water gas shift reaction tests were carried out in a pressurized fluidized bed reactor using commercial WGS catalyst and sand(as a substitute for $CO_2$ absorbent) as bed materials. Simulated syngas(mixed with $N_2$) was used as a reactant gas. Operating temperature was $210^{\circ}C$ and operating pressure was 20 bar. WGS catalyst content, steam/CO ratio, gas velocity, and syngas concentration were considered as experimental variables. CO conversion increased as the catalyst content and steam/CO ratio increased. CO conversion at fluidized bed condition was higher than that of fixed bed condition. However, CO conversion were maintained almost same value within the fluidized bed condition. CO conversion decreased as the syngas concentration increased. The optimum operation condition was confirmed and long time water gas shift reaction test up to 24 hours at the optimum operating conditions was carried out.

HCNG용 수소제조장치 실험 및 결과분석 (Analysis of Experimental Results on Hydrogen Generator for HCNG)

  • 이영철;한정옥;이중성;김용철;조영아;김상민;김형태
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.89-95
    • /
    • 2015
  • Pollution emission control of the 20th century, for transportation energy, are being enhanced, and then as alternative to this, because hydrogen emit only water gas emissions to be environmentally friendly energy, so hydrogen as a sustainable clean energy is in the limelight. Used in compressed natural gas engines to mix hydrogen and natural gas in both domestic and international technology development and demonstration is being carried out. The hydrogen-compressed natural gas(HCNG) charging infrastructure can be used to build a hydrogen infrastructure in the transitional aspects of a future hydrogen economy society. In this paper, for a demonstration of HCNG charging infrastructure we made and operated a $30Nm^3/h$ hydrogen generating unit and analyzed the result of the operation. We was identified the operating conditions of a reforming reactor and water gas shift reactor from an analysis result, the thermal efficiency was calculated according to the operating conditions of the total hydrogen production process.

수소 수율 증가를 위한 합성가스의 수성가스전환 반응 연구 (Water Gas Shift Reaction Research of the Synthesis Gas for a Hydrogen Yield Increase)

  • 김민경;김재호;김우현;이시훈
    • 신재생에너지
    • /
    • 제5권2호
    • /
    • pp.9-14
    • /
    • 2009
  • Automobile Shredder Residue (ASR) is very appropriate in a gasification melting system. Gasification melting system, because of high reaction temperature over than $1,350^{\circ}C$, can reduce harmful materials. To use the gasification processes for hydrogen production, the high concentration of CO in syngas must be converted into hydrogen gas by using water gas shift reaction. In this study, the characteristics of shift reaction of the high temperature catalyst (KATALCO 71-5M) and the low temperature catalyst (KATALCO 83-3X) in the fixed - bed reactor has been determined by using simulation gas which is equal with the syngas composition of gasification melting process. The carbon monoxide composition has been decreased as the WGS reaction temperature has increased. And the occurrence quantity of the hydrogen and the carbon dioxide increased. When using the high temperature catalyst, the carbon monoxide conversion ratio ($1-CO_{out}/CO_{in}$) rose up to 95.8 from 55.6. Compared with average conversion ratio from the identical synthesis gas composition, the low temperature catalyst was better than the high temperature catalyst.

  • PDF

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

RPF(Refuse plastic fuel) 합성가스의 수성가스 전환 반응 연구 (A Study on the Water Gas Shift Reaction of RPF Syngas)

  • 노선아
    • 자원리싸이클링
    • /
    • 제30권6호
    • /
    • pp.12-18
    • /
    • 2021
  • 수성가스 전환 반응은 가스화로 생성된 합성 가스에 수소 생산 증가와 H2/CO 비율 제어를 위해 수증기를 첨가하는 가스화 후속 공정이다. 본 연구에서는 RPF(Refuse plastic fuel) 가스화 시스템의 합성가스를 대상으로 수성가스 전환 반응을 연구하였다. 수성가스 전환 반응은 촉매를 이용하여 high temperature shift(HTS) 와 low temperature shift(LTS) 반응에 대하여 lab scale 관형 반응기를 이용하여 반응 온도, steam/carbon ratio, 유량의 변화가 H2 생성과 CO 전환율에 미치는 영향을 조사하였다. 운전 온도는 HTS 시스템이 250-400℃, LTS 시스템이 190-220℃이며 steam/carbon ratio는 1.5-3.5로 변화시켰다. 반응 모의 가스의 농도는 RPF 합성가스의 농도를 기준으로 CO, 40vol%, H2, 25vol%, CO2, 25vol%이다. 반응 온도와 steam/carbon ratio가 증가함에 따라 CO 전환율 및 H2 생성량이 증가하고, 유량이 증가하면 촉매층의 체류시간 단축으로 CO 전환율과 H2 생성량이 감소하였다.

가스화기에서 WGS 반응을 통한 합성가스의 수소 전환 (Hydrogen Conversion of Syngas by Using WGS Reaction in a Coal Gasifier)

  • 이시훈;김정남;엄원현;백일현
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.12-19
    • /
    • 2013
  • A gasification process with pre-combustion $CO_2$ capture process, which converts coal into environment-friendly synthetic gas, might be promising option for sustainable energy conversion. In the coal gasification for power generation, coal is converted into $H_2$, CO and $CO_2$. To reduce the cost of $CO_2$ capture and to maximize hydrogen production, the removal of CO and the additional production of hydrogen might be needed. In this study, a 2l/min water gas shift system for a coal gasifier has been studied. To control the concentration of major components such as $H_2$, CO, and $CO_2$, MFCs were used in experimental apparatus. The gas concentration in these experiments was equal with syngas concentration from dry coal gasifiers ($H_2$: 25-35, CO: 60-65, $CO_2$: 5-15 vol%). The operation conditions of the WGS system were $200-400^{\circ}C$, 1-10bar. Steam/Carbon ratios were between 2.0 and 5.0. The commercial catalysts were used in the high temperature shift reactor and the low temperature shift reactor. As steam/carbon ratio increased, the conversion (1-$CO_{out}/CO_{in}$) increased from 93% to 97% at the condition of CO: 65, $H_2$: 30, $CO_2$: 5%. However the conversion decreased with increasing of gas flow and temperature. The gas concentration from LTS was $H_2$: 54.7-60.0, $CO_2$: 38.8-44.9, CO: 0.3-1%.

Biohydrogen Production from Carbon Monoxide and Water by Rhodopseudomonas palustris P4

  • Oh You-Kwan;Kim Yu-Jin;Park Ji-Young;Lee Tae Ho;Kim Mi-Sun;Park Sunghoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권3호
    • /
    • pp.270-274
    • /
    • 2005
  • A reactor-scale hydrogen (H2) production via the water-gas shift reaction of carbon monoxide (CO) and water was studied using the purple nonsulfur bacterium, Rhodopseudomonas palustris P4. The experiment was conducted in a two-step process: an aerobic/chemoheterotrophic cell growth step and a subsequent anaerobic $H_2$ production step. Important parameters investigated included the agitation speed. inlet CO concentration and gas retention time. P4 showed a stable $H_2$ production capability with a maximum activity of 41 mmol $H_2$ g $cell^{-1}h^{-1}$ during the continuous reactor operation of 400 h. The maximal volumetric H2 production rate was estimated to be 41 mmol $H_2 L^{-1}h^{-1}$, which was about nine-fold and fifteen-fold higher than the rates reported for the photosynthetic bacteria Rhodospirillum rubrum and Rubrivivax gelatinosus, respectively. This is mainly attributed to the ability of P4 to grow to a high cell density with a high specific $H_2$ production activity. This study indicates that P4 has an outstanding potential for a continuous H2 production via the water-gas shift reaction once a proper bioreactor system that provides a high rate of gas-liquid mass transfer is developed.

In situ Photoacoustic Study of Water Gas Shift Reaction over Magnetite/Chromium Oxide and Copper/Zinc Oxide Catalysts

  • Byun, In-Sik;Choi, Ok-Lim;Choi, Joong-Gill;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1513-1518
    • /
    • 2002
  • Kinetic studies on the water-gas shift reaction catalyzed by magnetite/chromium oxide and copper/zinc oxide were carried out by using an in situ photoacoustic spectroscopic technique. The reactions were performed in a closed-circulation reactor system using a differential photoacoustic cell at total pressure of 40 Torr in the temperature range of 100 to $350^{\circ}C.$ The CO2 photoacoustic signal varying with the concentration of CO2 during the catalytic reaction was recorded as a function of time. The time-resolved photoacoustic spectra obtained for the initial reaction stage provided precise data of CO2 formation rate. The apparent activation energies determined from the initial rates were 74.7 kJ/mol for the magnetite/chromium oxide catalyst and 50.9 kJ/mol for the copper/zinc oxide catalyst. To determine the reaction orders, partial pressures of CO(g) and H2O(g) in the reaction mixture were varied at a constant total pressure of 40 Torr with N2 buffer gas. For the magnetite/chromium oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.93 and 0.18, respectively. For the copper/zinc oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.79 and 0, respectively.