• 제목/요약/키워드: Water erosion

검색결과 984건 처리시간 0.028초

고체입자 충돌침식으로 인한 배관 재질의 손상에 관한 연구 (A Study of Damage on the Pipe Flow Materials Caused by Solid Particle Erosion)

  • 김경훈;최덕현;김형준
    • Corrosion Science and Technology
    • /
    • 제13권4호
    • /
    • pp.130-138
    • /
    • 2014
  • Wall thinning can be classified into three types: flow-accelerated corrosion, cavitation erosion and solid particle erosion. This article presents a study of solid particle erosion, which frequently causes damages to power plants' pipe system. Unlike previous studies, this study uses a mechanism to make solid particles in a fluid flow collide with pipe materials in underwater condition. Experiment is conducted in three cases of velocity according to solid-water ratio using the three types of the materials of A106B, SS400, and A6061. The experiments were performed for 30 days, and the surface morphology and hardness of the materials were examined for every 7 days. Based on the velocity change of the solid particles in a fluid flow, the surface changes, the change in the amount of erosion, the erosion rate and the variation in the hardness of carbon steel and aluminum family pipe materials can all be determined. In addition, factor-based erosion rates are verified and a wall-thinning relation function is suggested for the pipe materials.

액적충돌침식으로 인한 배관감육 예측체계 구축에 관한 연구 (A Study on the Development of Prediction System for Pipe Wall Thinning Caused by Liquid Droplet Impingement Erosion)

  • 김경훈;조연수;황경모
    • Corrosion Science and Technology
    • /
    • 제12권3호
    • /
    • pp.125-131
    • /
    • 2013
  • The most common pipe wall thinning degradation mechanisms that can occur in the steam and feedwater systems are FAC (Flow Acceleration Corrosion), cavitation, flashing, and LDIE (Liquid Droplet Impingement Erosion). Among those degradation mechanisms, FAC has been investigated by many laboratories and industries. Cavitation and flashing are also protected on the piping design phase. LDIE has mainly investigated in aviation industry and turbine blade manufactures. On the other hand, LDIE has been little studied in NPP (Nuclear Power Plant) industry. This paper presents the development of prediction system for pipe wall thinning caused by LDIE in terms of erosion rate based on air-water ratio and material. Experiment is conducted in 3 cases of air-water ratio 0.79, 1.00, and 1.72 using the three types of the materials of A106B, SS400, and A6061. The main control parameter is the air-water ratio which is defined as the volumetric ratio of water to air (0.79, 1.00, 1.72). The experiments were performed for 15 days, and the surface morphology and hardness of the materials were examined for every 5 days. Since the spraying velocity (v) of liquid droplets and their contact area ($A_c$) on specimens are changed according to the air-water ratio, we analyzed the behavior of LDIE for the materials. Finally, the prediction equations(i.e. erosion rate) for LDIE of the materials were determined in the range of the air-water ratio from 0 to 2%.

연강의 캐비테이션 침식-부식 특성에 관한 연구 ( 1 ) - 진동 캐비네이션 침식-부식 손상 거동 - (Study on the Characteristics of Cavitation Erosion-Corrosion for Mild Steel ( 1 ) - Damage Behaviour of Vibration Cavitation Erosion-Corrosion -)

  • 임우조;황재호
    • 수산해양기술연구
    • /
    • 제31권4호
    • /
    • pp.413-422
    • /
    • 1995
  • 각종 환경 조건에서 진동 캐비테이션 침식-부식 시험 장치에 의해 연강(SS41)의 캐비테이션 침식-부식 손상 거동에 관한 연구를 한 결과 다음과 같은 결론을 얻었다. 1) 해수 중에서 캐비테이션 침식-부식 손상 거동은 중앙부와 테두리 부에서 거의 비슷한 정도로 발생하여 성장되지만, 증류수 중에서는 테두리부에서 손상이 먼저 발생한 다음 중앙부에도 손상이 점차 일어난다. 2) 비저항이 낮은 수도수 중의 캐비테이션 침식-부식 손상은 초기에는 비저항이 높은 증류수중에서의 것보다 증가하지만 시간이 경과하면서 CaCO 하(3)의 피막 형성에 의해 둔화된다. 3) 케비테이션 침식-부식 손상 특성은 잠복기, 증가기, 감소기 및 안정기의 4단계로 구분된다.

  • PDF

케비테이션 침식-부식에 미치는 기체와 고체입자의 영향 (Influences of Gas and Solid Particle on the Cavitation Erosion-Corrosion)

  • 임우조;백석종;황재호
    • 수산해양기술연구
    • /
    • 제29권2호
    • /
    • pp.124-131
    • /
    • 1993
  • Recently. with the rapid development in large sea water systems. there occurs much interest in the study of erosion-corrosion. In this study. the mild steel(SB41) was tested by using of a erosion-corrosion test apparatus with fountain-jet and was investigated under the environments of liquid, air-liquid 2 phase flow and solid particle-liquid 2 phase flow. Main results obtained are as follows : 1. The weight loss by corrosion-erosion in air-liquid 2 phase flow are more increased than that in only liquid solution. 2. Effect of air-liquid 2 phase flow on corrosion-erosion sensitivity becomes more sensitive in natural seawater than that in distilled water. 3. The corrosion potential by corrosion-erosion in air-liquid and solid particle-liquid 2 phase flow becomes noble than that of only liquid solution.

  • PDF

유실토양의 농도변화에 따른 침강특성에 대한 연구 (A study on sedimentation characteristic according to concentration change of top soil lost by flood)

  • 전영봉;강선홍
    • 상하수도학회지
    • /
    • 제28권5호
    • /
    • pp.581-587
    • /
    • 2014
  • Sediment basin that is typical facility installed for development business to prevent soil erosion has low removal efficiency and therefore, it causes complaints from the residents and has a bad effect on ecosystem. Thus there is a limit to control soil erosion using the existing design methods of sediment basin, so the purposes of this study is providing suitable design factors for sediment basin with regarding soil characteristic of development areas and analysing sedimentation characteristic by inflow concentration changes. The results, for analyzing the sedimentation characteristic by soil concentrations within approximately 2,000 ~ 20,000 mg/L of initial SS concentration, indicated similar sedimentation trends for same soil in the supernatant regardless of initial concentrations. However, for different soil characteristic (percent finer), there are different results in sedimentation rate and concentrations of the supernatant. Thus it is recommended that sediment basin to prevent soil erosion during construction should be designed based on retention time derived from soil sedimentation experiments regardless of inlet concentration. In addition, installing the soil erosion prevention facility at the back to satisfy effluent water quality should be considered to minimize soil erosion effectively.

원통다관형 열교환기의 침식-부식 특성에 관한 연구 (I) (Study on the Characteristics of Erosion-Corrosion for Heat Exchanger of Shell and Tube Type(I))

  • 임우조;정해규
    • 수산해양기술연구
    • /
    • 제35권2호
    • /
    • pp.196-200
    • /
    • 1999
  • In the case that erosion and corrosion occurs in machinery and structure at the same time, the synergy effect by erosion-corrosion affects fatal effect to durability of machinery and structure. Therefore, in machinery and structure which use corrosion liquid, the study of the synergy effect of erosion-corrosion which affects metal material is requested. In this paper. the flow corrosion experiment about the effect of temperature change and liquid velocity change in sea water was carried out to study the characteristics of erosion-corrosion for tube material Cu heat exchanger The main results obtained are as follows. (1) Damage appearance of tube outside by erosion-corrosion becomes dull because electrode potentials of Cu tube is higher than electrode potential of STPG38 shell. (2) In the cooling system by sea water, the weight loss rate of Cu at tube outside liquid temperature of $70^{\circ}C$ is higher than that of temperature of $20^{\circ}C$. (3) In cooling system by sea water, the weight loss rate of Cu at liquid velocity of 5.1m/s is higher than that of velocity of 1.47m/s. But as the testing time passed, the weight loss rate of Cu at velocity of 5.1m/s is almost steady and becomes dull at velocity of 1.47m/s.

  • PDF

Model Development for Specific Degradation Using Data Mining and Geospatial Analysis of Erosion and Sedimentation Features

  • Kang, Woochul;Kang, Joongu;Jang, Eunkyung;Julien, Piere Y.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.85-85
    • /
    • 2020
  • South Korea experiences few large scale erosion and sedimentation problems, however, there are numerous local sedimentation problems. A reliable and consistent approach to modelling and management for sediment processes are desirable in the country. In this study, field measurements of sediment concentration from 34 alluvial river basins in South Korea were used with the Modified Einstein Procedure (MEP) to determine the total sediment load at the sampling locations. And then the Flow Duration-Sediment Rating Curve (FD-SRC) method was used to estimate the specific degradation for all gauging stations. The specific degradation of most rivers were found to be typically 50-300 tons/㎢·yr. A model tree data mining technique was applied to develop a model for the specific degradation based on various watershed characteristics of each watershed from GIS analysis. The meaningful parameters are: 1) elevation at the middle relative area of the hypsometric curve [m], 2) percentage of wetland and water [%], 3) percentage of urbanized area [%], and 4) Main stream length [km]. The Root Mean Square Error (RMSE) of existing models is in excess of 1,250 tons/㎢·yr and the RMSE of the proposed model with 6 additional validations decreased to 65 tons/㎢·yr. Erosion loss maps from the Revised Universal Soil Loss Equation (RUSLE), satellite images, and aerial photographs were used to delineate the geospatial features affecting erosion and sedimentation. The results of the geospatial analysis clearly shows that the high risk erosion area (hill slopes and construction sites at urbanized area) and sedimentation features (wetlands and agricultural reservoirs). The result of physiographical analysis also indicates that the watershed morphometric characteristic well explain the sediment transport. Sustainable management with the data mining methodologies and geospatial analysis could be helpful to solve various erosion and sedimentation problems under different conditions.

  • PDF

자연스러운 지형 생성을 위한 침식 시뮬레이션 (Creation of Natural Terrain by Erosion Simulation)

  • 한영덕
    • 한국게임학회 논문지
    • /
    • 제15권6호
    • /
    • pp.171-182
    • /
    • 2015
  • 지형에 대한 기존의 침식 시뮬레이션은 주로 소규모의 지형 변화에 초점을 맞추고 있다. 이 논문에서는 물에 의한 침식과 열적 침식과정을 결합하여 강의 네트워크와 산들로 이루어진 자연스러운 대규모의 지형을 형성하는 방법을 제안한다. 물의 흐름에는 shallow water 시뮬레이션의 파이프 모델을 사용하며, 강물의 줄기가 쉽게 형성되게 하기 위해 속도에 의존하는 침식을, 강줄기 주변에 V자형 골짜기가 생성되게 하기 위해 열적 침식을 적용한다. 시뮬레이션 결과 $K_c$(퇴적물 수용상수)와 $K_v$(속도의존 침식강도)의 값이 적당한 범위에 있을 때만 목적한 모양의 지형이 생성되며, 이렇게 생성된 대표적인 자연스러운 모양의 지형을 예시한다. 또한 기존의 열적 침식 방법의 개선과 $K_c$가 큰 값일 때 발생하는 문제점을 해결할 방안을 제시한다.

농업 소류역으로부터의 토양침식 및 유사량 시산을 위한 전산모의 모델 (I) (Digital simulation model for soil erosion and Sediment Yield from Small Agricultural Watersheds(I))

  • 권순국
    • 한국농공학회지
    • /
    • 제22권4호
    • /
    • pp.108-114
    • /
    • 1980
  • A deterministic conceptual erosion model which simulates detachment, entrainment, transport and deposition of eroded soil particles by rainfall impact and flowing water is presented. Both upland and channel phases of sediment yield are incorporated into the erosion model. The algorithms for the soil erosion and sedimentation processes including land and crop management effects are taken from the literature and then solved using a digital computer. The erosion model is used in conjunction with the modified Kentucky Watershed Model which simulates the hydrologic characteristics from watershed data. The two models are linked together by using the appropriate computer code. Calibrations for both the watershed and erosion model parameters are made by comparing the simulated results with actual field measurements in the Four Mile Creek watershed near Traer, Iowa using 1976 and 1977 water year data. Two water years, 1970 and 1978 are used as test years for model verification. There is good agreement between the mean daily simulated and recorded streamflow and between the simulated and recorded suspended sediment load except few partial differences. The following conclusions were drawn from the results after testing the watershed and erosion model. 1. The watershed and erosion model is a deterministic lumped parameter model, and is capable of simulating the daily mean streamflow and suspended sediment load within a 20 percent error, when the correct watershed and erosion parameters are supplied. 2. It is found that soil erosion is sensitive to errors in simulation of occurrence and intensity of precipitation and of overland flow. Therefore, representative precipitation data and a watershed model which provides an accurate simulation of soil moisture and resulting overland flow are essential for the accurate simulation of soil erosion and subsequent sediment transport prediction. 3. Erroneous prediction of snowmelt in terms of time and magnitute in conjunction with The frozen ground could be the reason for the poor simulation of streamflow as well as sediment yield in the snowmelt period. More elaborate and accurate snowmelt submodels will greatly improve accuracy. 4. Poor simulation results can be attributed to deficiencies in erosion model and to errors in the observed data such as the recorded daily streamflow and the sediment concentration. 5. Crop management and tillage operations are two major factors that have a great effect on soil erosion simulation. The erosion model attempts to evaluate the impact of crop management and tillage effects on sediment production. These effects on sediment yield appear to be somewhat equivalent to the effect of overland flow. 6. Application and testing of the watershed and erosion model on watersheds in a variety of regions with different soils and meteorological characteristics may be recommended to verify its general applicability and to detact the deficiencies of the model. Futhermore, by further modification and expansion with additional data, the watershed and erosion model developed through this study can be used as a planning tool for watershed management and for solving agricultural non-point pollution problems.

  • PDF

Examination of Cavitation-Induced Surface Erosion Pitting of a Mechanical Heart Valve Using a Solenoid-Actuated Apparatus

  • Lee, Hwan-Sung;Hwang, Sung-Won;Katsuyuki Yamamoto
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1339-1348
    • /
    • 2003
  • Several factors, including peak dp/dt of the ventricular pressure and maximum closing velocity of leaflet have been studied as indices of the cavitation threshold. In the present study, just before closing velocity of the leaflet has been studied as indices of the cavitation threshold, and cavitation erosion on the surface of a mechanical valve was examined by focusing on squeeze flow and the water hammer phenomenon during the closing period of the valve. A simple solenoid-actuated test device that can directly control the valve closing velocity was developed, and opening-closing tests of 3,000 and 40,000 cycles were performed at various closing velocities. There was a closing velocity threshold to occur erosion pitting of valve surface, and its value was about 0.4 m/s in this study. Cavitation-induced erosion pits were observed only in regions where squeeze flow occurred immediately before valve closure On the other hand, the number of the pits was found to be closely related to an area of water hammer-induced pressure wave below the critical pressure defined by water vapor pressure. Therefore, it was concluded that cavitation is initiated and augmented by the two pressure drops due to squeeze flow and water hammer phenomenon, respectively.