• Title/Summary/Keyword: Water droplets

Search Result 411, Processing Time 0.029 seconds

RHEOLOGICAL CONSISTENCY OF CONCENTRATED WATER-IN-OIL EMULSION

  • Park, C-I.;Yang, J-C.;Cho, W-G.;S-H. Kang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.129-133
    • /
    • 1998
  • We have studied a relationship between the pattern of complex modulus change versus internal phase volume ratio and the rheological consistency of concentrated W/O emulsions with Magnesium Sulfate in the range 0.0 to 0.5 wt% and with different oil polarities, respectively. The rheological consistency with time of concentrated W/O emulsion was checked using Fudoh Rheometer and the coalescence of deformed water droplets was examined using polarized light microscope(LEICA DMRP). To find the pattern of complex modulus change of the concentrated emulsions versus internal phase volume ratio, the effect of varying water phase volume fraction from 0.78 up to 0.85 on viscoelastic measurements was investigated using rotational rheometer (HAAKE Rheostress RS 50). The rheological consistency was mainly destroyed by the coalescence of the deformed water droplets. The greater the increase of complex modulus was, the less coalescence occurred and the more consistent the concentrated emulsions were. And the pattern of complex modulus increase versus volume ratio has been explained with the resistance to coalescence of the deformed interfacial film of water droplets in concentrated W/O emulsion.

  • PDF

Characteristics of Water Spray for Extinguishment of Gasoline Pool Fire (가솔린 화재의 소화를 위한 수분무의 특성에 관한 실험적 연구)

  • jang, Yong-Jae;Kim, Myung-Bae;Kim, Yu
    • Fire Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.10-16
    • /
    • 1995
  • This study discribes characteristics of water spray for extinguishment of gasoline fire. Experiments are carried out for the gasoline pool fire nth the atomizing nozzles. Droplet size, spray pressure, amount of water which reaches the flame base and velocity of water spray are measured to find extinguishment conditions. Air entrainment due to the water spray and extinguishing process of gasoline fire by water spray are visualized. Boundary conditions of water spray for extinguishment of gasoline pool fire is quantitatively shown. As the result of experiments, it is found that the velocity of entrainment air and sprayed water are almost same and the water droplets size having small diameter under 40$\mu\textrm{m}$ can not extinguish the fire because too small droplets does not reach the fuel surface.

  • PDF

Research on the Electrical Charging of a Water Droplet on the Electrode and Droplet Actuation Method using Electrical Charge (전극표면에서 액적의 충전현상과 이를 이용한 액적의 이동 방법에 관한 연구)

  • Jung, Yong-Mi;Oh, Hyung-Chang;Kang, In-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.666-669
    • /
    • 2008
  • Droplet in miniaturized microfluidic systems have received much focused attention recently. In this work, electrical charging phenomenon of a conducting water droplet on the electrode under the dc electric field is studied and using this phenomenon droplet actuation method for microreactor applications is experimentally demonstrated. To find effects of key factors, the effects of electric field, medium viscosity, and droplet size are investigated. A scaling law of charging for the conducting droplet is derived from the experimental results. Unlike the case of a perfect conductor, the estimated amount of electrical charge ($Q_{est}$) of a water droplet is proportional to the 1.59 power of the droplet radius (R) and the 1.33 power of the electric field strength (E). (For a spherical perfect conductor, Q is proportional to R2 and E.) It is thought that the differences are mainly due to incomplete charging of a water droplet resulted from the combined effect of electrochemical reaction at electrode and the relatively low conductivity of water. Using this phenomenon, we demonstrate the transport of the charged droplet and fusion of two oppositely-charged droplets. When electric field is subjected sequentially on the electrode, the charged droplet is transported on the electrode. For the visualization of fusion of charged droplets, the precipitation reaction is used. When subjected to a DC voltage, two droplets charged are moving and merging toward each other due to the Coulombic force and chemical reaction is simultaneously occurred by coalescence of droplets. It may be due to the interchange effect of charge. It is shown that the droplet can be used for microreactor where transporting, merging etc. of reagents constitute unit operation.

  • PDF

A Study on the Spray Cooling Characteristics according to the Angle of Hot Heat Transfer Surface (고온 열전달면의 각도에 따른 분무냉각 특성에 관한 연구)

  • Yoon, D.H.;Oh, C.;Yoon, S.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.320-327
    • /
    • 2002
  • An experimental study of heat transfer from hot flat surface to water sprays was conducted in high temperature region. Heat transfer measurements for hot flat surface were made by 4 sheathed C-A thermocouples. Droplets volume flux were also measured-independently at a position in spray field. The test conditions included variations in droplets volume flux, subcooling of cooling water of $1.565\times10^{-3} to 14.089\times10^{-3}m^3/m^2s and 80 to $20^{\circ}C$ respectively. The effects of inclination angle on heat transfer were investigated and changes in inclination angle of hot flat surface affected heat transfer coefficients of high temperature region.

Simple and Highly Efficient Droplet Merging Method using Viscosity Difference (점도 차이를 이용한 간단하고 효율적인 액적의 병합 방법)

  • Jin, Byung-Ju;Kim, Young-Won;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1752-1757
    • /
    • 2008
  • Simple and highly efficient droplet merging method is proposed, which enables two nanoliter or picoliter droplets to merge regularly in a straight microchannel. We observe that two droplets of the same size but of different viscosities are merged by velocity difference induced as they are transported with the carrier fluid. To make viscosity difference, the mass ratio of water and glycerol is varied. Two droplets of the same size or of different sizes are generated alternatingly in the cross channel by controlling flowrates. This droplet merging method can be used to mix or encapsulate one target sample with another material, so that it can be applied to cell lysis, particle synthesis, drug discovery, hydrogel-bead production, and so on.

  • PDF

Coverage Distribution of Blasted Droplets by an Orchard Sprayer (과수방제기 살포입자의 도포율 분포특성)

  • 구영모;김상헌;신범수
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.355-362
    • /
    • 2001
  • Uniform application of agri-chemicals will improve orchard pest management. An air-blast(orchard) sprayer designed for vineyards has been used: however, few research on the uniformity and coverage of the sprays has been reported. Distributions of spray coverage were measured with artificial targets and analyzed to enhance the efficiency of spray application. A structure was built to place water sensitive papers, sampling spray droplets blasted from the orchard sprayer. The sampling cards were collected from five directions at three distances (2.5, 3.0 and 3.5m) for two fan speeds (2,075 and 3,031 rpm), and analyzed using an image analysis system. The distribution of the coverage percent area did not follow the wind velocity pattern. The coverage by the low fan speed was more uniform and higher than that by the higher fan speed. The coverage percent area decreased with an increase of distance. The distribution of droplet density was similar to that of coverage. However, the coverage contribution by smaller droplets became more significant as the distance increased. The upward blasting distance was limited within 3m, but the limit to the ground level was expanded the distance more than 3.5m because of the concentrated droplets.

  • PDF

Water droplet behavior on a solid-infused surface cured with commercial Gentoo polymer (상용 Gentoo 폴리머가 경화된 고체주입표면에서 물방울 거동)

  • Hyeongwon Kim;Jeong-Hyun Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.61-67
    • /
    • 2024
  • In this study, the behavior of water droplets on a solid-infused surface was evaluated by quantifying a water droplet's contact angle, sliding angle, and terminal velocity. The contact angle hysteresis and sliding angle of water on the solid-infused surface were measured to be lower than those of the hydrophobic PTFE surface. It led to the enhancement of the initiation of the water droplet's movement. When the capillary number was lower than Ca < 0.004, the terminal velocity of the water droplet on the solid-infused surface was higher than the PTFE surface due to the low contact line resistance. However, the transition of the droplet morphology from a hemispherical shape to a streamlined teardrop shape beyond Ca > 0.004 lost the effect of reducing frictional resistance on the solid-infused surface.

A Numerical Study on the Fire Suppression Characteristics of a Water Mist with Natural Wind in a Road Tunnel (도로터널에서 자연풍에 의한 미세물분무의 화재제어 특성에 관한 수치해석 연구)

  • Hwang, Cheol-Hong;Kim, Han-Su;Lee, Chang-Eon;Jang, Young-Nam;Shin, Hyun-Joon
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.221-227
    • /
    • 2008
  • In this study, the fire suppression characteristics of a water mist with natural wind in a road tunnel were calculated using the FDS(Fire Dynamic Simulation) code. In addition, the cooling and the chemical kinetic effects of water vapor on fire extinction ere investigated in a counterflow non-premixed flame using a detailed chemistry. As a result, the behavior of fire plume and the spray characteristics of water mist are modified remarkably with the increasing of wind velocity. In the case which is not the external natural wind, small droplets are more efficient in fire suppression than large droplets. However, the large droplets show better results on the fire suppression than the small droplets with the increasing of wind velocity. It can be estimated that the natural wind disturb the penetration of water droplets into the flame region and decrease the effect of oxygen dilution. Finally, it can be identified that the fire into the natural wind can be suppressed with smaller amount of $H_2O$ by flame stretching effect in the flame region than one in an enclosure, and the chemical kinetic effects of $H_2O$ on fire extinction are not affected significantly the velocity of natural wind.

Effect of Direct Emulsification Method and Invert Emulsification Method On Droplet Size of O/W Emulsion (O/W 에멀젼 입자의 크기에 미치는 Direct 유화법과 Invert유화법의 효과)

  • 김철훈;박재길
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.20 no.1
    • /
    • pp.64-81
    • /
    • 1994
  • O/W emulsions with mixed nonionic surfactants(polyoxyethylene(20)sorbitan monostearate/sorbitan sesquioleate), liquid paraffin, water prepared by direct inversion emulisification method and continuous inversion emulsification Method. The one-step, two-step and three-step phase inversion emulsification method were used in experiments. Effect of added water on droplet size of final O/W emulsions which is prepared by phase inversion emulsification method were investigated. In direct inversion emulsification method(two-step emulsification method), fine and homogeneous droplets of OIW emulsions were formed after phase inversion steps i.e. ,W/O - (W/O) If double emulsion - O/W emulsion. In continuous inversion emulsification method(three-step emulsification method), fine and homogeneous O/W emulsion were formed after phase inversion steps i.e., W/O - pseudomicroemulsion - O/W. By latter method, more Fine and homogenuous droplets were formed than former method. 10-10, 8 HLB region of mixed non-ionic surfactants could produce most fine droplets. This HLB region had maximum values of solubilization water and This HLB value of mixed nonionic surfactants produced fine and homogenuous droplets.

  • PDF

Removal Efficiency of Water Contents using Inertial Impaction Separator with Change in Relative Humidity (입구 습도 변화에 따른 관성 충돌 방식의 액적 분리장치의 수분제거효율 변화)

  • Song, Dong Keun;Lee, Sin Young;Hong, Won Seok;Shin, Wanho;Kim, Gyujin;Kim, Hanseok
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.247-252
    • /
    • 2013
  • Removal of water contents in a gas is needed in industrial field of gas processing related on energy production/conversion, and environmental treatment. Inertial separators are economic devices for separating droplets from the gas stream. For design and incorporation of inertial pre-treatment separator, characteristics of removal of water contents with various operation conditions are needed. In this study, removal efficiency of water droplets at various flowrates (5-14 SCMM) and relative humidity (R.H.) conditions (40%, and 90%) has been investigated. At low R.H. condition, the removal characteristic is similar to the removal of solid particles. But, droplet growth resulting from the condensation of water vapor at high R.H. condition, is significant and it made increase in removal efficiency of droplet phase of water contents. For rapid removal of water contents, an effective method to enhancing condensation growth of water droplets is highly needed.