• Title/Summary/Keyword: Water cycle characteristics

Search Result 410, Processing Time 0.028 seconds

Performance Characteristics and Economic Assessment of a River Water: Source Heat Pump System (하천수 열원 열펌프 시스템의 성능 특성 및 경제성 평가)

  • Park, Cha-Sik;Jung, Tae-Hun;Park, Hong-Hee;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.11
    • /
    • pp.621-628
    • /
    • 2009
  • The objectives of this study are to analyze the performance of a river water-source heat pump and to carry out economic assessment for the heat pump. The COP of the river water-source heat pump was 3-21% higher than that of the air-source heat pump because river water provides stable operating temperature compared with air temperature throughout the year. The economic analysis was carried out by comparing the initial and operating cost of the river water-source heat pump with those of the conventional air-source heat pump. The ratio of the life cycle operating cost to the life cycle cost increased with the increase of building capacity. The payback period was found to be less than 3.5 years when the capacity of the river water-source heat pump was larger than 10 RT.

A Characteristics Simulation of Heat Pump System for Sewage Water as a Heat Source (하수열원 열펌프 시스템의 성능 시뮬레이션)

  • Park, Il-Hwan;Chang, Ki-Chang;Lee, Young-Soo;Yoon, Hyung-Kee;Baek, Young-Jeen
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.280-286
    • /
    • 2008
  • In this study, characteristics simulation of heat pump system is investigated for heating and cooling using sewage water as a heat source. A simulation program for preestimate operation characteristics of heat pump system is developed. The performance of this system is resolved by several variables and the characteristics which is based on actual air and sewage temperature data. The simulation results agree well with the experimental values of COP. In the analysis of system characteristics, the COP is changed between $3\sim5$ in winter season for heating load, $4\sim6$ in summer season for cooling load. As the results of Life Cycle Cost analysis over a 15 year life cycle, the energy cost could be reduced by 250 million won if a heat pump system was used instead of a conventional boiler and an absorbtion refrigerator on the office building.

Basic Static Characteristics of a Closed and a Regeneration Cycles for the OTEC System (해양온도차발전 Closed and Regeneration Cycle의 기본 정특성)

  • Cha, Sang-Won;Kim, You-Taek;Mo, Jang-Oh;Lim, Tae-Woo;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1151-1157
    • /
    • 2012
  • Ocean Thermal Energy Conversion(OTEC) technology is one of the new and renewable energy that utilizes the natural temperature gradient that exists in the tropical ocean between warm surface water and the deep cold water, to generate electricity. The selection of working fluid and the OTEC cycle greatly influence the effect on the system operation, and it's energy efficiency and impacts on the environment. Working fluids of the OTEC are ammonia, R22, R407C, and R410A. In this paper, we compared boiling pressure to optimize OTEC system at $25^{\circ}C$. Also, this paper showed net-power and efficiency according to working fluids for closed cycle and regeneration cycle.

Influence of Operating Conditions on the Performance of a Oxy-fuel Combustion Reference Cycle (순산소 연소 기본 사이클의 작동조건 변화에 따른 성능해석)

  • Park, Byung-Chul;Sohn, Jeong-Lak;Kim, Tong-Seop;Ahn, Kook-Young;Kang, Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2971-2976
    • /
    • 2008
  • Recently, there has been growing interest in the oxyfuel combustion cycle since it enables high-purity CO2 capture with high efficiency. However, the oxyfuel combustion cycle has some important issues regarding to its performance such as the requirement of water recirculation to decrease a turbine inlet temperature and proper combustion pressure to enhance cycle efficiency. The purpose of the present study is to analyze performance characteristics of the oxyfuel combustion cycle with different turbine inlet temperatures and combustion pressures. It is expected that the turbine inlet temperature improves cycle efficiency, on the other hand, the combustion pressure has specific value to display highest cycle efficiency.

  • PDF

Understanding N-nitrosodimethylamine (NDMA) formation during chloramination: Precursor characteristics, pathways and mitigation (상수 염소 처리 과정중에 형성되는 N-니트로소디메틸아민에 대한 이해: 전구체의 특징, 경로와 경감)

  • Seid., Mingizem Gashaw;Son, Aseom;Cho, Kangwoo;Hong, Seokwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.279-289
    • /
    • 2018
  • N-nitrosodimethylamine (NDMA) is a class of disinfection byproducts and a frequently detected nitrosamine with carcinogenic potentials. This review summarizes NDMA precursors, their formation mechanisms in chloraminated water, and mitigation strategies. Understanding the formation mechanism and characteristics of precursors is essential for developing a mitigation strategy. Dimethylamine (DMA), the most widely studied NDMA precursor, has an NDMA molar yield up to 3%. In comparison, a subset of tertiary amines, e.g., pharmaceuticals, generate up to 90% upon chloramination. Potent NDMA precursors, are characterized by their negative partial charge, low planarity values and molecular weight, and high bond length and $pK_a$ values. A nucleophilic substitution of tertiary amine on chloramine is a key reason for the high NDMA yield from the most potent NDMA precursors. The distribution and fate of NDMA in surface water, aquifers, and its formation in the distribution system can be mitigated through two strategies: (1) degrading or/removing NDMA after its formation and (2) pre-treatment of its precursor's prior chloramination.

Annual Reproductive Cycle of Acheilognathus majusculus, a Korean Endemic Species

  • Lim, Jin-Yeong;Lee, Won-Kyo
    • Development and Reproduction
    • /
    • v.21 no.3
    • /
    • pp.297-305
    • /
    • 2017
  • An experiment was conducted to investigate the annual reproductive cycle of a Korean endemic species, Acheilognathus majusculus, from Jeokseong-myeon located in Seomjin River. The reproductive cycle is examined histologically regarding water temperature and day length of the habitat, the gonadosomatic index (GSI), the female ovipositor length index (OLI), monthly variation in egg diameter distribution, and developmental characteristics of female and male gonads. The maximum GSI was found in $19.21{\pm}2.32$ and $6.90{\pm}0.53$ for female and male respectively when water temperature ($14^{\circ}C$) and day length (11.1hr) began to rise. On the other hand, the minimum level was reached during August ($1.87{\pm}0.67$ for female and $0.88{\pm}0.50$ for male). No samples represent with measurable ovipositor between September and November, while the longest ovipositor length index was in April ($79.68{\pm}4.69%$). We compared and calculated the stages of testis and ovary development process in order to determine the germ cell development characteristics and the reproductive cycle. According to the result, we classified the female Acheilognathus majusculus reproductive cycle into four stages: Ripe (April) and spawning phase (May to June), degenerative phase (July), growing phase (August to December), and mature phase (January to March). The annual reproductive cycle of male Acheilognathus majusculus was categorized into five stages viz. Ripe and spawning phase (May to June), degenerative phase (July to August), resting phase (September to November), growing phase (December to February), and mature phase (March to April).

Hydraulic Characteristics of the Non-power Soil Cleaning and Keeping System by the Large-Scale Model Test at the Dike Gate (배수문에서 실내모형실험에 의한 무동력 토사제거시스템의 수리 특성)

  • Park, Chan Keun;Oh, Beom Hwan;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.67-75
    • /
    • 2014
  • In this study, the large-scale hydraulic model test was performed to investigate the hydraulic characteristics for development of the non-power soil cleaning and keeping system at the dike gate. The outlet height, outflow number, outflow discharge, and outflow cycle were compared and analyzed. The non-power soil cleaning and keeping system was most effective at 11.2 mm in the outlet height. And then the mean outflow cycle was 1.09 sec, and the mean outflow discharge was $0.00164m^3/s$. The total outflow number increased gradually as the water level of a water tank increased, and the outlet height decreased. As a level of water tank decreased, the mean outflow cycle was lengthened, and the unit outflow discharge increased. This result showed this system was most effective. To remove the silty clay deposited in facilities, the methods of excavation, dredging, high pressure washing, etc have been applied to the tidal facilities such as land reclamation, a small size fishing port, and a harbor for maintenance. However, this is extremely cost-ineffective, whereas the non-power soil cleaning and keeping system will bring about an enormously positive economic effect. In addition, when the non-power soil cleaning and keeping system is applied to the dike gate of land reclamation, a thorough examination of the local tidal data and the careful system planning are required to prevent the disaster damage caused by flooding.

Research on the construction concept and general framework of Smart Water Resource

  • Tian, Yu;Li, JianGuo;Jiang, Yun-zhong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.216-216
    • /
    • 2015
  • Frequent hydro-meteorological events caused by global climate change and human exacerbate activities, make the water resource problem more complicated. The increasing speed urbanization brings a significant impact on the city flood control and security, water supply safety, water ecological security, water environment safety and the water engineering security in China, and puts forward higher requirements to urban water integrated management, undoubtedly which become the biggest obstacle for water ecological civilization construction, thus urgent requiring an advanced methods to enhance the effectiveness of the water integrated management. The other fields of smart ideas point out a development path for water resource development. The construction demand of smart water resource is expounded in the paper, combining the philosophy of modern Internet of things with the application of cloud computing technology. The concept of smart water resource is analyzed, the connotation characteristics of smart water resource is extracted, and the general model of smart water resource is refined. Then, the frame structure of smart water resource is put forward. The connotation and the overall framework of the smart water resource represent a higher level of water resource informationization development and provide a comprehensive scientific and technological support to transform water resource management from an extensive, passive, static, branch and traditional management to a fine, active, dynamic, collaborative and modern management.

  • PDF

Development and application of Smart Water Cities global standards and certification schemes based on Key Performance Indicators

  • Lea Dasallas;Jung Hwan Lee;Su Hyung Jang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.183-183
    • /
    • 2023
  • Smart water cities (SWC) are urban municipalities that utilizes modern innovations in managing and preserving the urban water cycle in the city; with the purpose of securing sustainability and improving the quality of life of the urban population. Understanding the different urban water characteristics and management strategies of cities situate a baseline in the development of evaluation scheme in determining whether the city is smart and sustainable. This research herein aims to develop measurements and evaluation for SWC Key Performance Indicators (KPIs), and set up a unified global standard and certification scheme. The assessment for SWC is performed in technical, as well as governance and prospective aspects. KPI measurements under Technical Pillar assess the cities' use of technologies in providing sufficient water supply, monitoring water quality, strengthening disaster resilience, minimizing hazard vulnerability, and maintaining and protecting the urban water ecosystem. Governance and Prospective Pillar on the other hand, evaluates the social, economic and administrative systems set in place to manage the water resources, delivering water services to different levels of society. The performance assessment is composed of a variety of procedures performed in a quantitative and qualitative manner, such as computations through established equations, interviews with authorities in charge, field survey inspections, etc. The developed SWC KPI measurements are used to evaluate the urban water management practices for Busan Eco Delta city, a Semulmeori waterfront area in Gangseo district, Busan. The evaluation and scoring process was presented and established, serving as the basis for the application of the smart water city certification all over the world. The established guideline will be used to analyze future cities, providing integrated and comprehensive information on the status of their urban water cycle, gathering new techniques and proposing solutions for smarter measures.

  • PDF

Heating Performance Characteristics of Heat Pump with VI cycle using Re-Heater and Solar-Assisted (태양열과 재열기를 사용한 VI heat pump의 성능 특성에 관한 연구)

  • Lee, Jin-Kook;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.6
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, heating performance of the air-cooled heat pump with vapor-injection (VI) cycles, re-heater and solar heat storage tank was investigated experimentally. Devices used in the experiment were comprised of a VI compressor, re-heater, economizer, variable evaporator, flat-plate solar collector for hot water, thermal storage tank, etc. As working fluid, refrigerant R410A for heat pump and propylene glycol (PG) for solar collector were used. In this experiment, heating performance was compared by three cycles, A, B and C. In case of Cycle B, heat exchange was conducted between VI suction refrigerant and inlet refrigerant of condenser by re-heater (Re-heater in Fig. 3, No. 3) (Cycle B), and Cycle A was not use re-heater on the same operating conditions. In case of Cycle C, outlet refrigerant from evaporator go to thermal storage tank for getting a thermal energy from solar thermal storage tank while re-heater also used. As a result, Cycle C reached the target temperature of water in a shorter time than Cycle B and Cycle A. In addition, it was founded that, as for the coefficient of heating performance($COP_h$), the performance in Cycle C was improved by 13.6% higher than the performance of Cycle B shown the average $COP_h$ of 3.0 and by 18.9% higher than the performance of Cycle A shown the average $COP_h$ of 2.86. From this results, It was confirmed that the performance of heat pump system with refrigerant re-heater and VI cycle can be improved by applying solar thermal energy as an auxiliary heat source.