• Title/Summary/Keyword: Water curing

Search Result 941, Processing Time 0.03 seconds

Thermal Resistant Characteristics of Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착잔토를 재활용한 지중 전력케이블 유동성 뒤채움재의 열저항 특성)

  • Oh, Gidae;Kim, Daehong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.15-24
    • /
    • 2010
  • In the case of underground power utilities pipe such as circular pipe, the most difficult problem is low compaction efficiency of the bottom of pipe inducing the failure of utilities. To overcome this problem, various studies have been performed and one of these is CLSM(Controlled Low Strength Materials) accelerated flow ability. But underground power utilities pipe backfill materials is also needed to have good thermal property that can dissipate the heat as rapidly as it is generated. So, in this study, we performed thermal resistancy test for various materials such as sand, weathered soil, clay and mixed soil to analyze the thermal characteristics of CLSM(Controlled Low Strength Materials) with accelerated flow ability for various conditions(water content, unit weight, void ratio, curing time) and to evaluate the applicability for backfill material of underground power utilities pipe. The test results of 16 specimens for thermal resistancy test showed good thermal property that maintained below $85^{\circ}C\;cm/W$.

Long-term Durability Characteristics of Fly ash Concrete Containing Lightly Burnt MgO Powder (저온 소성한 MgO 분말을 함유한 플라이애시 콘크리트의 장기재령에서의 내구특성)

  • Jang, Bong-Seok;Choi, Seul-Woo;Lee, Kwang-Myong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.909-916
    • /
    • 2013
  • Concrete containing lightly burnt MgO has long term expansibility. It also could compensate for the thermal shrinkage of mass concrete, because the hydration of MgO proceeds at a slow pace to long-term age. Thus, lightly burnt MgO has been applied to the construction of mass concrete such as dams. Recently, the expansion characteristics of MgO concrete with fly ash that could be applied to mass concrete for the reduction of hydration heat have been studied and however, limited studies on its durability. This study investigates the long-term durability characteristics of fly ash concrete with lightly burnt MgO. The durability tests on carbonation, freezing-thawing, diffusion of chloride, and resistance to sulfate attack were carried out for MgO concrete with curing for 360 days in submerged condition with different temperature of 20 and $50^{\circ}C$. The results reveal that MgO concrete shows a greater resistance of carbonation, diffusion of chloride, and resistance to sulfate attack. On the other hand the resistance of freezing-thawing was little influenced by MgO powder.

THE EFFECT OF DIFFERENT SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH OF THE RESIN TO TYPE IV GOLD ALLOY (금속면의 표면처리 방법에 따른 금합금과 전장레진간의 전단결합강도에 관한 연구)

  • Park, Dong-Won;Lim, Ho-Nam;Woo, Yi-Hyung;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.685-692
    • /
    • 1995
  • The effect of five different surface treatments on the shear bond strength of the resin bond to Type IV Gold alloy was studied by bonding resin to metal. The metal surface was subjected to one of the following treatments and bonded ;(1) air abraded with $50{\mu}m$ alumina particles,(2) beads(3) beads and tin-plated at curreant density of 300mA/$cm^2$,(4) tin-plated at current density of 300mA/$cm^2$,(5) silicacoating with sililink, and bonded with an MDP Opaque primer, CESEAD resin system. The bonded specimens were immersed in water for 23 hours after 1 hour resin curing and shear bond strength were recorded. On the basis of this study, the following conclusions can be drawn; 1. Difference were found in the shear bond strength among all experimental groups. And bead glroup exihibited the highest shear bond strength and sand blasting group exhibited the lowest shear bond strength on five groups. 2. Bead group, mechanical bonding was significantly higher than that obtained with the samples, tinplating, silicacoating, and chemical bonding. 3. No statistically signiflcant difference was found between the shear bond strengths obtained with bead and bead-tinplating, and between tinplating and sili cacoating.

  • PDF

Unconfined Compressive Strength Characteristics and Time Dependent Behavior of Soil-Cement (소일시멘트의 일축압축강도 특성 및 시간의존 거동)

  • Kim, Jong-Ryeol;Kang, Hee-Bog;Kang, Hwa-Young;Kim, Do-Hyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.87-96
    • /
    • 2004
  • As a special concrete, which is a mixture of soil, cement and water, has strength like regular concrete for pavement, soil cement has been used in various field such as pavement and soft soil improvement. The objective of this study was to investigate the characteristic of unconfined compressive strength and time dependent behavior of soil cement that is made from decomposed granite soil or coluvial and inorganic solidification liquid. The results showed that the unconfined compressive strength appears to increase as the amount of cement and curing time increase In addition, the strength seems to decrease with increase of the potion of fine particles(No 200 sieve). The result of XRD indicated that there is Vermiculite, the product of reaction, in the soil cement. The dynamic properties of material, such as shear complex compliance, shear complex modulus, and phase angle could be calculated from the hysteresis loop obtained from the Haversine Creep Tests. Finally, creep behavior was able to be predicted from these dynamic properties.

Filling and Wiping Properties of Silver Nano Paste in Trench Layer of Metal Mesh Type Transparent Conducting Electrode Films for Touch Screen Panel Application (실버 나노분말을 이용한 메탈메쉬용 페이스트의 충전 및 와이핑 특성)

  • Kim, Gi-Dong;Nam, Hyun-Min;Yang, Sangsun;Park, Lee-Soon;Nam, Su-Yong
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.464-471
    • /
    • 2017
  • A metal mesh TCE film is fabricated using a series of processes such as UV imprinting of a transparent trench pattern (with a width of $2-5{\mu}m$) onto a PET film, filling it with silver paste, wiping of the surface, and heat-curing the silver paste. In this work nanosized (40-50 nm) silver particles are synthesized and mixed with submicron (250-300 nm)-sized silver particles to prepare silver paste for the fabrication of metal mesh-type TCE films. The filling of these silver pastes into the patterned trench layer is examined using a specially designed filling machine and the rheological testing of the silver pastes. The wiping of the trench layer surface to remove any residual silver paste or particles is tested with various mixture solvents, and ethyl cellosolve acetate (ECA):DI water = 90:10 wt% is found to give the best result. The silver paste with 40-50 nm Ag:250-300 nm Ag in a 10:90 wt% mixture gives the highest electrical conductance. The metal mesh TCE film obtained with this silver paste in an optimized process exhibits a light transmittance of 90.4% and haze at 1.2%, which is suitable for TSP application.

A Molecular Dynamics Simulation Study on Hygroelastic behavior of Thermosetting Epoxy (열경화성 에폭시 기지의 흡습탄성 거동에 관한 분자동역학 전산모사)

  • Kwon, Sunyong;Lee, Man Young;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.371-378
    • /
    • 2017
  • In this study, hygroelastic behavior of thermosetting epoxy is predicted by molecular dynamics simulations. Since consistent exposures to humid environments lead to macroscopic degradation of polymer composite, computational simulation study of the hygroscopically aged epoxy cell is essential for long-time durability. Therefore, we modeled amorphous epoxy molecular unit cell structures at a crosslinking ratio of 30, 90% and with the moisture weight fraction of 0, 4 wt% respectively. Diglycidyl ether of bisphenol F (EPON862) and triethylenetetramine (TETA) are chosen as resin and curing agent respectively. Incorporating equilibrium and non-equilibrium ensemble simulation with a classical interatomic potential, various hygroelastic properties including diffusion coefficient of water, coefficient of moisture expansion (CME), stress-strain curve and elastic modulus are predicted. To establish the structural property relationship of pure epoxy, free volume and internal non-bond potential energy of epoxy are examined.

Influence of Milk Co-precipitates on the Quality of Restructured Buffalo Meat Blocks

  • Kumar, Sunil;Sharma, B.D.;Biswas, A.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.4
    • /
    • pp.564-568
    • /
    • 2004
  • Restructuring had made it possible to utilize lower value cuts and meat trimmings from spent animals by providing convenience in product preparation besides enhancing tenderness, palatability and value. Milk co-precipitates (MCP) have been reported to improve the nutritional and functional properties of certain meat products. This study was undertaken to evaluate the influence of incorporation of milk co-precipitates at four different levels viz. 0, 10, 15 and 20% on the quality of restructured buffalo meat blocks. Low-calcium milk co-precipitates were prepared from skim milk by heat and salt coagulation of milk proteins. Meat chunks were mixed with the curing ingredients and chilled water in a Hobart mixer for 5 minutes, followed by addition of milk co-precipitates along with condiments and spice mix and again mixed for 5 minutes. Treated chunks were stuffed in aluminium moulds and cooked in steam without pressure for 1.5 h. After cooking, treated meat blocks were compared for different physico-chemical and sensory attributes. Meat blocks incorporated with 10% MCP were significantly better (p<0.05) than those incorporated with 0, 15 and 20% MCP in cooking yield, percent shrinkage and moisture retention. Sensory scores were also marginally higher for meat blocks incorporated with 10% MCP than product incorporated with 15 and 20% MCP, besides being significantly higher than control. On the basis of above results 10% MCP was considered optimum for the preparation of restructured buffalo meat blocks. Instrumental texture profile analysis revealed that meat blocks incorporated with 10% MCP were significantly better (p<0.05) in hardness/ firmness than control although, no significant (p>0.05) differences were observed in cohesiveness, springiness, gumminess and chewiness of both type of samples.

A Study about the Increase of Strength according to Mixing Ground Improvement Material with Coastal Clay and Sandy Soil (지반개량재 혼합에 따른 해안점토와 사질토에서의 강도증진에 관한 연구)

  • Lee, Kwang-Joon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.47-56
    • /
    • 2009
  • This is a study about how the increase of strength is changed when ground improvement material is mixed with either coastal clay or sandy soil. The ground improvement material was made from mixing a certain proportion of the slag which is by-products generated by smelting the iron ore and the paper fly ash which is formed by bumping up the paper. The ground improvement material was added to coastal soil and sandy soil each. And then according to ratio of water contents, number of curing days and ratio of mixture, specimen for uniaxial compression test was made. The change of uniaxial compression strength and the generated substances was analyzed while the specimen is being cured for 28days. The result of analysis shows that the strength of coastal clay was increased about eleven times more than that of sandy soil. This means that ettringite reaction by ground improvement material becomes more distinctive in the coastal clay than in the sandy soil.

Changes in the Total Lipid, Neutral Lipid, Phospholipid and Fatty Acid Composition of Phospholipid Fractions during Pastirma Processing, a Dry-Cured Meat Product

  • Aksu, Muhammet Irfan;Dogan, Mehmet;Sirkecioglu, Ahmet Necdet
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.18-28
    • /
    • 2017
  • Pastirma is a dry-cured meat product, produced from whole beef or water buffalo muscles. This study was carried out to investigate the effect of production stages (raw meat, after curing, after $2^{nd}$ drying and pastirma) on the total lipid, neutral lipid, phospholipid and fatty acid composition of phospholipid fraction of pastirma produced from beef M. Longissimus dorsi muscles. The pH and colour ($L^*$, $a^*$ and $b^*$) analyses were also performed in raw meat and pastirma. It was found that pastirma production stages had significant effects (p<0.01) on the total amounts of lipid, neutral lipid and phospholipid, and the highest amounts of lipid, neutral lipid and phospholipid were detected in pastirma. In pastirma, neutral lipid ratio was determined as $79.33{\pm}2.06%$ and phospholipid ratio as $20.67{\pm}2.06%$. Phospholipids was proportionately lower in pastirma than raw meat. Pastirma production stages affected pentadecanoic acid (15:1) (p<0.01), linoleic acid (18:2n-6) (p<0.05), ${\gamma}-linoleic$ acid (18:3n-6) (p<0.05), erucic acid (22:1n-9) (p<0.05), docosapentaenoic acid (22:5n-6) (p<0.05), total unsaturated fatty acid (${\Sigma}USFA$) (p<0.05) and total saturated fatty acid (${\Sigma}SFA$) (p<0.05) ratios of phospholipid fraction and also the moisture content (p<0.01). Pastirma process also affected pH and colour ($L^*$, $a^*$ and $b^*$) values (p<0.01), and these values were higher in pastirma than raw meat.

Shear Bond Strength of Porcelain Repair Systems (도재 수리 시스템의 전단결합강도에 관한 연구)

  • Woo, Soo;Shin, Soo-Youn;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.3
    • /
    • pp.211-220
    • /
    • 2006
  • Need of porcelain-repair system is largely demanding as dental porcelain restorations are increased in clinical dentistry. This study investigated shear bond strength of commercial porcelain-repair systems on dental porcelain and their reliability. Experimental groups were as follows; Group A Super Bond C&B, Group B Porcelain repair kit, Group C Ceramic repair, and Group D Spectrum system as a control. Porcelain disks were fired and embedded in epoxy resin. Porcelain surface were ground using 220 grit SiC disk, then cleaned in ultrasonic bath. Then porcelain specimens were treated with each repair system. A clear polystyrene cylinder 3.5 mm in internal diameter was filled with composite resin. Then the resin cylinder was polymerized with a visible light curing unit. Thirty one specimens at each group were prepared and stored at $37^{\circ}C$ distilled water for 48 h. Specimens were tested in an Instron testing machine according to ISO TR 11405. Mean shear bond strength and standard deviation of each group was $15.7{\pm}4.1MPa$ (Group A), $12.8{\pm}4.9MPa$ (Group B), $7.2{\pm}3.0MPa$ (Group C) and $9.6{\pm}2.2MPa$ (Group D). ANOVA and Tukey HSD post-hoc test showed that there were significant differences between groups (p<0.05). Data of bond strength were analyzed with two-parameter Weibull distribution. Confidence interval of Weibull modulus (m-parameter) at 95% of Group A (3.5-6.3) and Group D (3.6-6.0) were significantly higher than Group B (2.2-3.7) and Group C (2.0-3.4). There was little correlation between mean shear bond strength and Weibull modulus. Results indicated that acid-etching of porcelain surface increased porcelain-resin shear bonding strength.