• Title/Summary/Keyword: Water curing

Search Result 946, Processing Time 0.027 seconds

Optimum Mix Design of Alkali-Activated Cement Mortar Using Bottom Ash as Binder (바텀애쉬를 결합재로 사용한 알칼리 활성화 시멘트 모르타르의 최적배합에 관한 연구)

  • Kang, Su-Tae;Ryu, Gum-Sung;Koh, Kyoung-Taek;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.487-494
    • /
    • 2011
  • In this research, the possibility of using bottom ash as a binder for the alkali-activated cement mortar is studied. Several experiments were performed to investigate the variation of the material properties according to the mix proportion. In the experimental program, the flowability and compressive strength were evaluated for various values of water/ash ratio, activator/ash ratio, sodium silicate to sodium hydroxide ratio, curing temperature, and the fineness of bottom ash as the main variables. The experimental results showed that high strength of 40 MPa or greater could be achieved in $60^{\circ}C$ high temperature curing condition with proper flowability. For $20^{\circ}C$ ambient temperature curing, the 28 days compressive strength of approximately 30MPa could be obtained although the early-age strength development was very slow. Based on the results, the range of optimized mix design of bottom-ash based alkali-activated cement mortar was suggested. In addition, using the artificial neural network analysis, the flowability and compressive strength were predicted with the difference in the mix proportion of the bottom-ash based alkali-activated cement mortar.

Characteristics of Organic Polymer Soil Pavement Curing Condition (양생조건에 따른 유기계 폴리머 흙 포장의 특성)

  • Hwang, Sungpil;Jeoung, Jaehyeung;Lee, Yongsoo;Ryu, Sanghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.35-42
    • /
    • 2014
  • The efforts to reduce carbon emission have been made in many aspects and in road, the study to develop the construction method which will replace asphalt and cement is also underway. But given the low cost and high performance offered by cement, among many solidification agents, it's difficult to seek the competent alternative. Polymeric material has been used in various ways for its advantages including lightweight and easy process for complex function and generates less carbon emission, and thus it would possibly be efficient if it replaces soil pavement using cement. This study, using three different types of organic polymeric solidification agents with different solidification principle, is intended to identify the difference in strength depending on curing method, natural dry or oven dry. Applicability of organic polymeric solidification agents to walkway and bike lane was investigated and as a result of unconfined strength test, all of them satisfied the minimum strength requirements of bike lane. Furthermore, strength characteristics of soil pavement depending on variation of water content was evaluated to identify the relationship, thereby appropriate curing method using organic polymeric solidification agent is proposed.

A Study on Durability of Concrete According to Mix Condition by Marine Environment Exposure Experiment (해양환경폭로실험을 통한 배합조건별 콘크리트의 내구성에 관한 연구)

  • Jo, Young-Jin;Choi, Byung-Wook;Choi, Jae-Seok;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4542-4551
    • /
    • 2013
  • Recently, much attention has focused on the study of eco-friendly concrete using recycled by-products for protecting marine ecosystem and durability of concrete exposed to marine condition. This study evaluated the durabilities of 4 different type of concrete mixtures(Control, Marine, Porous, New slag) with the seawater resistance by marine environment exposure experiment and freeze-thaw resistance, resistance to chloride ion penetration considering severe deterioration environment. In this study, we conducted seawater resistance using compressive strength according to the age(7/28/56 days) of specimen and curing conditions(standard(fresh water), tidal, immersion, artificial seawater). The results show that compressive strength of concrete exposed to marine environment exposure condition was lower than those of the standard curing condition. Also, compressive strength of New slag using eco-friendly materials for protecting marine ecosystem was lower than those of other concretes, there is need to improve the performance of New slag. The results for freeze-thaw resistance showed that all mixtures have excellent, but the Porous and New slag were lower than others. Also, the more improved resistance to chloride ion penetration than those of the Marine was measured in the New slag regardless of curing condition.

EFFECT OF AN INTERMEDIATE BONDING RESIN AND FLOWABLE RESIN ON THE COMPATIBILITY OF TWO-STEP TOTAL ETCHING ADHESIVES WITH A SELF-CURING COMPOSITE RESIN (자가 중합 복합 레진과 두 단계 산 부식 접착제의 친화성에 대한 중간 접착제와 흐름성 레진의 효과)

  • Choi, Sook-Kyung;Yum, Ji-Wan;Kim, Hyeon-Cheol;Hur, Bock;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.397-405
    • /
    • 2009
  • This study compared the effect of an activator, intermediate bonding resin and low-viscosity flowable resin on the microtensile bond strength of a self-curing composite resin used with two-step total etching adhesives. Twenty extracted permanent molars were used. The teeth were assigned randomly to nine groups (n=10) according to the adhesive system and application of additional methods (activator, intermediate adhesive, flowable resin). The bonding agents and additional applications of each group were applied to the dentin surfaces. Self-curing composite resin buildups were made for each tooth to form a core, 5mm in height. The restored teeth were then stored in distilled water at room temperature for 24h before sectioning. The microtensile bond strength of all specimens was examined. The data was analyzed statistically by one-way ANOVA and a Scheffe's test. The application of an intermediate bonding resin (Optibond FL adhesive) and low-viscosity flowable resin (Tetric N-flow) produced higher bond strength than that with the activator in all groups. Regardless of the method selected, Optibond solo plus produced the lowest ${\mu}TBS$ to dentin. The failure modes of the tested dentin bonding agents were mostly adhesive failure but there were some cases showed cohesive failure in the resin.

Effect of Curing Temperature and Time on Measuring Fundamental Properties of Asphalt Mixture (양생온도 및 시간이 아스팔트 혼합물의 기초특성치 측정에 미치는 영향)

  • Kim, Kwang-Woo;Hong, Sang-Ki;Oh, Heung-Lak;Lee, Soon-Jae
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.13-21
    • /
    • 2002
  • This study examines the importance of conditioning temperature and period before measuring fundamental properties of asphalt mixture. Marshall specimens were made and cured in the air for one day and conditioned by submerging at $60^{\circ}C$ water for 30 min before loading. It was observed that if the specimen was cured in a lower (or higher) than normal lab temperature ($25^{\circ}C$) before submerging, the measured values were not consistent. Indirect tensile strength (ITS) was also measured on the specimens cured at different temperatures. Although there is no regulation specifying how long the specimen should be conditioned before testing, it is recommended that the conditioning time be for the specimen to be at $25^{\circ}C$. Test must be conducted for the specimen cured well before conditioning for desired test. If curing temperature was lower or higher than normal, and mixture was not properly cured, then test results would not be reliable. This study showed how long the specimen should be submerged at $60^{\circ}C$ for Marshall test and conditioned at $25^{\circ}C$ for ITS test for the specimens cured in different temperature.

  • PDF

A Hardening and Strength Properties of Magnesium Phosphate Mortars for Rapid Repair Materials (급속 보수용 마그네슘 인산염 모르타르의 경화 및 강도특성)

  • Oh, Hongseob;Lee, Inhee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.103-110
    • /
    • 2019
  • Damage to the pavement system due to various causes will be required rapid repair work for reopening the vehicle traffic. The magnesium oxide phosphate composite(MPC) has a short curing time and is capable of early compressive strength development, is suitable for rapid repair materials. The aim of this study was to evaluate the hardening and compressive strength characteristics of MPC according to the water-binder (W / B) ratio and magnesium-phosphate(M / P) ratio in order to develop repair materials consisted with light burned magnesia and potassium dihydrogen phosphate. In order to ensure the workability in the field application, the difference of mechanical properties according to standard sand and ordinary sand and performance of retards were evaluated. The mix proportion with W/B ratio was about 35% and the M/P ratio was about 1.0 ~ 1.2 has a superior perfomance with strength and hardening condition. Especially, the strength of composite at only 1 day curing with W/B ratio of 0.35 and the M/P ratio of 1.2 was shown the higher than 25.0 MPa. Boric acid as a retarder was found to be suitable for ensuring the working time, and the purity of magnesium oxide was about 90 ~ 95%, which is effective for ensuring curing time and strength.

Evaluation of Underwater-Curing Coating Materials

  • Nah, Hwan-Seon;Kim, Kang-Seok;Kim, Kang-Sik;Lee, Chul-Woo;Baker, Randy
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.68-73
    • /
    • 2009
  • An evaluation of underwater - repair coating materials was based on the premise that defective areas of the existent epoxy coating such as blistering and cracking will be repaired on spot under submerged condition. Tests include the clarification as to whether they are compatible between as-built coating and new repair coating on each concrete specimen. Candidate coating materials for repair were tested in a laboratory to scrutinize their suitability to perform the needed function satisfactorily. The qualification tests performed are as a minimum as follows: Integrated radiation tolerance test, chemical resistance test (submerged condition in deionized water), hardness test and adhesion test of the repair materials. The proper repair coating materials were selected and approved from this test results.

The Efficacy of Cynomorii Herba and Eucommiae Cortex on Treatment of Osteoporosis in Ovariectomized Rats (쇄양(鎖陽)과 두중(杜仲)이 골다공증 유발 후 흰쥐의 골밀도와 체중에 미치는 영향)

  • Choi, Hong-Sik
    • The Korea Journal of Herbology
    • /
    • v.23 no.2
    • /
    • pp.19-24
    • /
    • 2008
  • Objectives : The present study had been undertaken to investigate the effects of Cynomorii Herba and Eucommiae Cortex on treatment of osteoporosis in ovariectomized rats. Methods : In this experiment, the rats of experimental groups were ovariectomized. Rats of medicinal groups were administered by water extracts of Cynomorii Herba or Eucommiae Cortex. The levels of bone mineral density and body weight were measured. Results : The levels of spinal bone mineral density was significantly increased in comparison with OVX group at 8 weeks after medication in Cynomorii Herba group. The levels of femoral and fibula-tibial bone mineral density were not significantly increased in comparison with OVX group after medication in Cynomorii Herba and Eucommiae Cortex group. The levels of body weight were not significantly decreased in comparison with OVX group after medication in Cynomorii Herba and Eucommiae Cortex group. Conclusions : Reviewing these experimetal results, it appears that Cynomorii Herba have efficacy on treatment of osteoporosis. And further study should be conducted to illustrate in depth the curing and prevention of osteoporosis.

  • PDF

Prediction of the Compressive Strength of High Flowing Concrete by Maturity (적산온도에 의한 고유동콘크리트의 압축강도 예측)

  • 길배수;한장현;김규용;권영진;남재현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.281-286
    • /
    • 1998
  • The aim of this study is to compare the development of compressive strength of high-Flowing concrete with maturity and to investigate the applicability of strength prediction models of concrete. An experiment was attempted on the high-flowing concrete mixes using Ordinary portland cement, High belite cement, Blast furance slage cement and replaced Fly-ash of 30% by weight of Ordinary portland cement, the water-binder ratios of mixes being 0.35 and the curing temperatures being 30, 20, 10, 5$^{\circ}C$. Test results of mixes are statistically analyzed to infer the correlation coefficient between the maturity and the compressive strength of high-flowing concrete.

  • PDF

Diffusion of Chloride Ions in Limestone Powder Concrete

  • Moon Han-Young;Jung Ho-Seop;Kim Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.859-865
    • /
    • 2004
  • In this study, the diffusion of chloride ions in cement concrete made with and without the limestone powder was investigated. In order to study the effect of the limestone powder, all mixtures were prepared at a fixed water-cementitious ratio (0.45). From the experimental results, the setting time of limestone powder concrete is faster than that of control concrete, and compressive strength of all specimens decreased with increasing replacement ratio of limestone powders. The diffusion properties of limestone powder concretes indicated a trend increasing with curing period. LSA10 and LSA20 concretes, the diffusion coefficient was smaller than that of control concrete. The addition of $10-20\%$ limestone powder reduces the diffusion coefficient of chloride ions, irrespective of fineness levels of limestone powder.