• Title/Summary/Keyword: Water coupling

Search Result 430, Processing Time 0.024 seconds

Fluid Effects on the Core Seismic Behavior of a Liquid Metal Reactor

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2125-2136
    • /
    • 2004
  • In this paper, a numerical application algorithm for applying the CFAM (Consistent Fluid Added Mass) matrix for a core seismic analysis is developed and applied to the 7-ducts core system to investigate the fluid effects on the dynamic characteristics and the seismic time history responses. To this end, three cases such as the in-air condition, the in-water condition without the fluid coupling terms, and the in-water condition with the fluid coupling terms are considered in this paper. From modal analysis, the core duct assemblies revealed strongly coupled out-of-phase vibration modes unlike the other cases with the fluid coupling terms considered. From the results of the seismic time history analysis, it was also verified that the fluid coupling terms in the CFAM matrix can significantly affect the impact responses and the seismic displacement responses of the ducts.

2D Finite element analysis of rectangular water tank with separator wall using direct coupling

  • Mandal, Kalyan Kumar;Maity, Damodar
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.317-336
    • /
    • 2015
  • The present paper deals with the analysis of water tank with elastic separator wall. Both fluid and structure are discretized and modeled by eight node-elements. In the governing equations, pressure for the fluid domain and displacement for the separator wall are considered as nodal variables. A method namely, direct coupled for the analysis of water tank has been carried out in this study. In direct coupled approach, the solution of the fluid-structure system is accomplished by considering these as a single system. The hydrodynamic pressure on tank wall is presented for different lengths of tank. The results show that the magnitude of hydrodynamic pressure is quite large when the distances between the separator wall and tank wall are relatively closer and this is due to higher rotating tendency of fluid and the higher sloshed displacement at free surface.

Dynamics of a Globular Protein and Its Hydration Water Studied by Neutron Scattering and MD Simulations

  • Kim, Chan-Soo;Chu, Xiang-Qiang;Lagi, Marco;Chen, Sow-Hsin;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.21-21
    • /
    • 2011
  • A series of Quasi-Elastic Neutron Scattering (QENS) experiments helps us to understand the single-particle (hydrogen atom) dynamics of a globular protein and its hydration water and strong coupling between them. We also performed Molecular Dynamics (MD) simulations on a realistic model of the hydrated hen-egg Lysozyme powder having two proteins in the periodic box. We found the existence of a Fragile-to-Strong dynamic Crossover (FSC) phenomenon in hydration water around a protein occurring at TL=$225{\pm}5K$ by analyzing Intermediate Scattering Function (ISF). On lowering of the temperature toward FSC, the structure of hydration water makes a transition from predominantly the High Density Liquid (HDL) form, a more fluid state, to predominantly the Low Density Liquid (LDL) form, a less fluid state, derived from the existence of a liquid?liquid critical point at an elevated pressure. We showed experimentally and confirmed theoretically that this sudden switch in the mobility of the hydration water around a protein triggers the dynamic transition (so-called glass transition) of the protein, at a temperature TD=220 K. Mean Square Displacement (MSD) is the important factor to show that the FSC is the key to the strong coupling between a protein and its hydration water by suggesting TL${\fallingdotseq}$TD. MD simulations with TIP4P force field for water were performed to understand hydration level dependency of the FSC temperature. We added water molecules to increase hydration level of the protein hydration water, from 0.30, 0.45, 0.60 and 1.00 (1.00 is the bulk water). These confirm the existence of the FSC and the hydration level dependence of the FSC temperature: FSC temperature is decreased upon increasing hydration level. We compared the hydration water around Lysozyme, B-DNA and RNA. Similarity among those suggests that the FSC and this coupling be universal for globular proteins, biopolymers.

  • PDF

Study on the water bursting law and spatial distribution of fractures of mining overlying strata in weakly cemented strata in West China

  • Li, Yangyang;Zhang, Shichuan;Yang, Yingming;Chen, Hairui;Li, Zongkai;Ma, Qiang
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.613-624
    • /
    • 2022
  • A study of the evolution of overburden fractures under the solid-fluid coupling state was conducted based on the geological and mining characteristics of the coal seam depth, weak strata cementation, and high-intensity mining in the mining areas of West China. These mining characteristics are key to achieving water conservation during mining or establishing groundwater reservoirs in coal mines. Based on the engineering background of the Daliuta Coal Mine, a non-hydrophilic simulation material suitable for simulating the weakly cemented rock masses in this area was developed, and a physical simulation test was carried out using a water-sand gushing test system. The study explored the spatial distribution and dynamic evolution of the fractured zone in the mining overburden under the coupling of stress and seepage. The experimental results show that the mining overburden can be vertically divided into the overall migration zone, the fracture extension zone and the collapse zone; additionally, in the horizontal direction, the mining overburden can be divided into the primary fracture zone, periodic fracture zone, and stop-fracture zone. The scope of groundwater flow in the overburden gradually expands with the mining of coal seams. When a stable water inrush channel is formed, other areas no longer generate new channels, and the unstable water inrush channels gradually close. Finally, the primary fracture area becomes the main water inrush channel for coal mines. The numerical simulation results indicate that the overlying rock breaking above the middle of the mined-out area allows the formation of the water-conducting channel. The water body will flow into the fracture extension zone with the shortest path, resulting in the occurrence of water bursting accidents in the mining face. The experimental research results provide a theoretical basis for the implementation of water conservation mining or the establishment of groundwater reservoirs in western mining areas, and this theoretical basis has considerable application and promotion value.

Effect of coupling agent on the dielectric and mechanical properties of GFRP (GFRP의 유전적 및 기계적 특성에 미치는 계면결합제의 효과에 관한 연구)

  • 곽영순;신중홍;홍영기;조성수;박정후
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.43-45
    • /
    • 1988
  • This paper deals with the effect amino silane coupling agent for the composite insulating material (GFRP). Three kinds of coupling agent treatments are studied, that is treatment on glass fiber, epoxy resin and both glass fiber and epoxy resin. The result shows that the optimum electrical and mechanical properties is obtained for the sample treated on the glass fiber with 0.3% amino silane water solution.

  • PDF

STUDY ON THE INFLUENCE OF POLYOL ON MICROEMULSION GEL SYSTEM (Microemulsion gel system에 있어서 Polyol의 효과에 관한 연구)

  • Youn, J.;Jin, P.K.
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.18 no.1
    • /
    • pp.132-149
    • /
    • 1992
  • This study relates to a microemulsion gel which is applied in various cosmetic preparations because of good appearance, superior stability and a thin, uniform, non-greasy fi Am on the skin. Main object of this study is to elucidate the influence of polyol(clarifying agent and/or coupling agent in microemulsion) on microemulsion and to establish the optimum conditions for microemulsion gel formation in the view of superior consistency, stability, clarity and pick-up from a container. The constituents of the system are composed of water, polar ester oi1, nonionic surfactant and polyol. Using the three-component phase diagram and the tetrahedral-phase diagram, we have investigated the changes of transparence regions, consistency and resonance effect by an impact in microemulsion gel varying in polyol ratio. The results of this study showed that the variation in the content of water and couple ins agent has major influence on the microemulsion gel and the optimum formation region of microemulsion gel is the widest when the ratio of glycerine(coupling agent) to water is 63-75% It is believed that optimum use of polyol seems to be helpful to obtain the microemulsion gel containing maximum amount of oil phase with minimum amount of surfactant which is recently one of the major problems of cosmetic chemists.

  • PDF

Application of Manganese Oxide for the Oxidative Degradation of Bisphenol-A in Aqueous Phase (망간산화물을 이용한 수용액내 Bisphenol-A의 산화 반응성 평가)

  • Jee, Sang-Hyun;Ko, Seok-Oh
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.659-664
    • /
    • 2007
  • The objective of this study is to evaluate the detoxification method for the endocrine disrupting chemicals by manganese oxide. Manganese coated sand and bisphenol-A (BPA) was used as the reactive medium and the contaminant. Results showed that manganese oxide effectively degrades BPA by oxidative coupling reaction. The nonlinear oxidative coupling reaction orders were obtained for BPA and oxide, respectively. The reaction rate of BPA decreased as initial BPA concentration increased, as oxide loading decreased and as pH increased. The higher ionic strength, the higher reaction rate was observed. Divalent cations were adsorbed on the oxide surfaces, resulting in the decreased degradation rate of BPA.

A Study on Flange Coupling Design of Polyethylene Corrugated Steel Pipe (PE 피복형 파형강관의 플랜지 이음부 설계에 관한 연구)

  • Kim, Tae-Kyu;Lee, Ho-Young;Yang, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.403-408
    • /
    • 2007
  • The concrete pipe(Hume, PC) and polyethylene(PE) pipe are usually used for dram pipe in local market. Hume pipe, however, is heavy and needs the high cost of construction and PC pipe has a disadvantage to easily occur the deformation by the outside pressure even though it is light and constructible. The corrugated steel pipe coated with polyethylene is used increasedly because it is durable, constructible and economical. However, it is not used for sewage or waste water because it is hard to guarantee the watertight property on the coupling part. In this study, we studied on the flange coupling and the method of its construction to guarantee the watertight property and easy to use. If the developed flange coupling and method are used on a construction field, the economical property, constructible property and structural safety can be guaranteed.

Bleeding characteristics of coupling materials for installation of acoustic emission (AE) sensor (AE 센서 설치를 위한 커플링 재료의 블리딩 특성)

  • Lee, Jong-Won;Kim, Hyunwoo;Kim, Min-Koan;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.635-650
    • /
    • 2017
  • Acoustic emission (AE) sensors have broadly used to monitor the damage of underground structures and tunnels. The reliability of measured signal is determined by the coupling condition of the AE sensors which are embedded in the target underground structure. To secure the reliability of health monitoring results, it is important to understand the characteristics of the coupling materials. In this study, laboratory tests were performed using portland cement, micro cement, and gypsum as coupling materials in order to verify the bleeding characteristics. The effective parameters for bleeding were determined to be water-cement ratio, material type, curing time, and injected volume of coupling materials. As a results of the experimental study, the bleeding rate increases with an increase in a water-cement ratio and an injected volume; for portland cement, water-cement ratio and injected volume effects are larger than the micro cement. However, curing time is not much effective for occurrence of the bleeding phenomenon. It is anticipated that this study may be useful for the selection of suitable coupling materials for installation of acoustic emission sensors.