• Title/Summary/Keyword: Water conductivity

Search Result 1,911, Processing Time 0.037 seconds

Analysis of the Correlation between Geological Characteristics and Water Withdrawals in the Laterals of Radial Collector Well (방사형집수정의 수평집수관에서 지질특성과 취수량의 상관관계 분석)

  • Kim, Tae-Hyung;Jeong, Jae-Hoon;Kim, Min;OH, Se-Hyoung;Lee, Jae-Sung
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.201-215
    • /
    • 2014
  • This study was performed to investigate the correlation between hydraulic conductivity and the flow rate of an aquifer, with the flow rate calculated from the laterals of the radial collector well using data obtained by the development project of riverbank filtration (Second Phase) in Changwon City. The hydraulic conductivity was empirically calculated from unconsolidated sediments collected from a sandy gravel layer along the middle-to-downstream sections of the Nakdong River. The Beyer equation produced the most suitable hydraulic conductivity from the various empirical formulas employed. The calculated hydraulic conductivity ranged from 0.083 to 0.264 cm/s, with an average value of 0.159 cm/s, suggesting that the aquifer in the study area possesses a high permeability with a good distribution of sandy gravel. The relationship between the calculated hydraulic conductivity in the aquifer and the entrance velocity into the screen, the flow rate was analyzed through the linear regression analysis. From the result of regression analysis, it showed that the hydraulic conductivity and the entrance velocity into the screen and the flow rate have a linear regression equation having about 72% of the high correlation. The result of verification in the measured data between each variable showed a high suitability from being consistent with the approximately 72% in the linear regression analysis. This study demonstrates that the groundwater flow rate can be estimated within the laterals of the radial collector well using a linear regression equation, if the hydraulic conductivity of the aquifer is known. This methodology could thus be applicable to other aquifers with hydraulic conductivity and permeability parameters similar to those in the present study area.

Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지에서 고분자 막의 이온 전도도)

  • Hwang, Byungchan;Chung, Hoi-Bum;Lee, Moo-Seok;Lee, Dong-Hoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.593-597
    • /
    • 2016
  • The effects of relative humidity, current density and temperature on the ionic conductivity were studied in PEMFC (Proton Exchange Membrane Fuel Cell). Water contents and water flux in the electrolyte membrane largely affected ion conductivity. The water flux was modelled and simulated by only electro-osmotic drag and back-diffusion of water. Ion conductivities were measured at membrane state out of cell and measured at MEA (Membrane and Electrode Assembly) state in condition of operation. The water contents in membrane increase as relative humidity increased in PEMFC, as a results of which ion conductivity increased. Current enhanced electro-osmotic drag and back diffusion and then water contents linearly increased. Enhancement of current density results in ion conductivity. Ion conductivity of about 40% increased as the temperature increased from $50^{\circ}C$ to $80^{\circ}C$.

Calculation of Thermal Conductivity and Heat Capacity from Physical Data for Some Representative Soils of Korea

  • Aydin, Mehmet;Jung, Yeong-Sang;Lee, Hyun-Il;Kim, Kyung-Dae;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The thermal properties including volumetric heat capacity, thermal conductivity, thermal diffusivity, and diurnal and annual damping depths of 10 representative soil series of Korea were calculated using some measurable soil parameters based on the Taxonomical Classification of Korean Soils. The heat capacity of soils demonstrated a linear function of water content and ranged from 0.2 to $0.8cal\;cm^{-3}^{\circ}C^{-1}$ for dry and saturated medium-textured soil, respectively. A small increase in water content of the dry soils caused a sharp increase in thermal conductivity. Upon further increases in water content, the conductivity increased ever more gradually and reached to a maximum value at saturation. The transition from low to high thermal conductivity occurred at low water content in the soils with coarse texture, and at high water content in the other textures. Thermal conductivity ranged between $0.37{\times}10^{-3}cal\;cm^{-1}s^{-1}^{\circ}C^{-1}$ for dry (medium-textured) soil and $4.01{\times}10^{-3}cal\;cm^{-1}s^{-1}^{\circ}C^{-1}$ for saturated (medium/coarse-textured) soil. The thermal diffusivity initially increased rapidly with small increases in water content of the soils, and then decreased upon further increases in the soil-water content. Even in an extreme soil with the highest diffusivity value ($1.1{\times}10^{-2}cm^2s^{-1}$), the daily temperature variation did not penetrate below 70 cm soil depth and the yearly variation not below 13.4 m as four times of damping depths.

Correlating the hydraulic conductivities of GCLs with some properties of bentonites

  • Oren, A. Hakan;Aksoy, Yeliz Yukselen;Onal, Okan;Demirkiran, Havva
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1091-1100
    • /
    • 2018
  • In this study, the relationships between hydraulic conductivity of GCLs and physico-chemical properties of bentonites were assessed. In addition to four factory manufactured GCLs, six artificially prepared GCLs (AP-GCLs) were tested. AP-GCLs were prepared in the laboratory without bonding or stitching. A total of 20 hydraulic conductivity tests were conducted using flexible wall permeameters ten of which were permeated with distilled deionized water (DIW) and the rest were permeated with tap water (TW). The hydraulic conductivity of GCLs and AP-GCLs were between $5.2{\times}10^{-10}cm/s$ and $3.0{\times}10^{-9}cm/s$. The hydraulic conductivities of all GCLs to DIW were very similar to that of GCLs to TW. Then, simple regression analyses were conducted between hydraulic conductivity and physicochemical properties of bentonite. The best correlation coefficient was achieved when hydraulic conductivity was related with clay content (R=0.85). Liquid limit and plasticity index were other independent variables that have good correlation coefficients with hydraulic conductivity (R~0.80). The correlation coefficient with swell index is less than other parameters, but still fairly good (R~0.70). In contrast, hydraulic conductivity had poor correlation coefficients with specific surface area (SSA), smectite content and cation exchange capacity (CEC) (i.e., R < 0.5). Furthermore, some post-test properties of bentonite such as final height and final water content were correlated with the hydraulic conductivity as well. The hydraulic conductivity of GCLs had fairly good correlation coefficients with either final height or final water content. However, those of AP-GCLs had poor correlations with these variables on account of fiber free characteristics.

Changes of Hydraulic Conductivity During Desalmization of Reclaimed Tidelands (간척지 토양의 제염과정중 수리전도도의 변화)

  • 구자웅;은종호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.85-93
    • /
    • 1988
  • This laboratory study was carried out in order to produce fundamental data for analyzing salt movement and desalinization effects, using samples of silt loam soil collected in Gyehwado and Daeho reclaimed tidelans, and samples of silty clay loam soil collected in Kimie tideland. Desalinization experiments with gypsum treatment were performed to analyze changes of the hydraulicc conductivity with changes of the soil property and the salt concentration during the desalinization of reclaimed tideland soils by leaching through the subsufface drainage, and correlations between factors infl uencing the reclamation of salt affected soils were analyzed by the statistical method. The results were summarized as follows: 1. The reclaimed tideland soils used in this study were saline-sodic soils with the high exchangeable sodium percentage and the high electrical conductivity. 2. Changes of the hydraulic conductivity with the amount of leaching water and the leaching time elapsed were affected by the amount of gypsum except exchangeable sodium and clay contents. The regression equation between the depth of water leached per unit depth of soil (Dw / Ds : X) or the square root of the leaching time elapsed (T $^1$ $^2$ : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a . bx. 3. The more exchangeable sodium and clay contents regardless of the amount of gypsum, the more the leaching time was required until a given volume of water was leached through the soil profile. The regression analysis showed that the relationship between the depth of water leached per unit depth of soil(Dw /Ds:X) and the square root of the leaching time elapsed(T$^1$$^2$ :Y) could be described by Y=a . Xb. 4. The hydraulic conductivity was influenced to a major degree by the salt concentration provided that the electrical conductivity was below 10 mmhos / cm during the desalinization of reclaimed tideland soils. The regression equation between the relative electrical conductivity ( ECr : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a + b . X-$^1$. 5. In conclusion, the hydraulic conductivity, leaching requirements and the leaching time elapsed can be estimated when the salt concentration decreases to a certain level during the desalinization of reclaimed tidelands, and the results may be applied to the analysis of salt movement and desalinization effects.

  • PDF

An Experimental Analysis of Effective Thermal Conductivity of Porous Materials Using Structural Models (구조모델을 이용한 다공성 매질의 유효열전도도 분석)

  • Cha, Jang-Hwan;Koo, Min-Ho;Keehm, Young-Seuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.91-98
    • /
    • 2010
  • The effective thermal conductivity of porous materials is usually determined by porosity, water content, and the conductivity of the matrix. In addition, it is also affected by the internal structure of the materials such as the size, arrangement, and connectivity of the matrix-forming grains. Based on the structural models for multi-phase materials, thermal conductivities of soils and sands measured with varying the water content were analyzed. Thermal conductivities of dry samples were likely to fall in the region between the Maxwell-Eucken model with air as the continuous phase and the matrix as the dispersed phase ($ME_{air}$) and the co-continuous (CC) model. However, water-saturated samples moved down to the region between the $ME_{wat}$ model and the series model. The predictive inconsistency of the structural models for dry and water-saturated samples may be caused by the increase of porosity for water-saturated samples, which leads to decrease of connectivity among the grains of matrix. In cases of variably saturated samples with a uniform grain size, the thermal conductivity showed progressive changes of the structural models from the $ME_{air}$ model to the $ME_{wat}$ model depending on the water content. Especially, an abrupt increase found in 0-20% of the water content, showing transition from the $ME_{air}$ model to the CC model, can be attributed to change of water from the dispersed to continuous phase. On the contrary, the undisturbed soil samples with various sizes of grains showed a gradual increase of conductivity during the transition from the $ME_{air}$ model to the CC model.

Electrical Conduction in $SrZr_{0.95}Y_{0.05}O_{2.975}$ Ceramics

  • Baek, Hyun-Deok;Noh, Jin-Hyo
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.288-295
    • /
    • 1999
  • Partial conductivities contributed by electron holes, oxygen ions, and protons were caluclated in $SrZr_{0.95}Y_{0.05}O_{2.975}$, using the reported formulae derived from the defect chemistry of HTPCs. Required parameters were obtained from the graphical analysis of total conductivity variation against partial pressure of water vapor and oxygen. Predicted overall conductivities showed a reasonable agreement with experimental measurements. The conductivity of the material showed a linear increase with square root of the water vapor pressure. This increase was due to proton conduction in an almost pure ionic conductivity. The calculation of partial conductivities at $800^{\circ}C$ resulted in an almost pure ionic conductivity at $P_{02}=10^{-10}$ atm and a predominant hole conductivity at $P_{02}=10^{-10}$ atm. Pure proton conduction was not expected at this temperature, contrary to the earlier reports. Discussions were made in relation with reported thermodynamic data and defect structure of the material. It was shown that from the total conductivity dependence on water vapor pressure, the pure ionic conductivity at low oxygen partial pressures could be separated into protonic and oxygen ionic conductivity in $ZrO_2$-based HTPCs.

  • PDF

Long-Term Hydraulic Conductivity and Cation Exchange of a Geosynthetic Clay Liner (GCL) Permeated with Inorganic Salt Solutions

  • Jo, Ho Young;Benson, Craig H.;Edil, Tuncer B.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.59-62
    • /
    • 2004
  • Hydraulic conductivity tests were conducted on a geosynthetic clay liner (GCL) for more than 2.5 yr using inorganic salt solutions to evaluate how the long-term hydraulic conductivity is affected by cation concentration and valence. Only small changes (i.e., $\leq$ 2X) in hydraulic conductivity (K) occurred during the test duration when the permeant solution was deionized (DI) water or 100 mM KCl and NaCl solutions. For weak CaCl$_2$ solutions ($\leq$ 20 mM), the hydraulic conductivities initially (< 0.2 yr) were comparable to the hydraulic conductivity obtained with DI water, but gradually increased by a factor of 2 to 13 over a period of nearly 2 yr. In contrast, the GCL permeated with strong CaCl$_2$ solutions ($\geq$ 50 mM) reached equilibrium nearly immediately, with a hydraulic conductivity approximately 2 orders of magnitude higher than the hydraulic conductivity to DI water.

  • PDF

Effects of Compost and Gypsum on Soil Water Movement and Retention of a Reclaimed Tidal Land

  • Lee, Jeong-Eun;Yun, Seok-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.340-344
    • /
    • 2014
  • Compost and gypsum can be used to ameliorate soil physicochemical properties in reclaimed tidal lands as an organic and inorganic amendment, respectively. To evaluate effects of compost and gypsum on soil water movement and retention as a soil physical property, we measured the soil's saturated hydraulic conductivity and field capacity after treating the soil collected in a reclaimed tidal land with compost and gypsum. Saturated hydraulic conductivity of soil increased when compost was applied at the conventional application rate of $30Mg\;ha^{-1}$. However, the further application of compost insignificantly (P > 0.05) increased saturated hydraulic conductivity. On the other hand, additional gypsum application significantly increased soil saturated hydraulic conductivity while it decreased soil field capacity, implying the possible effect of gypsum on flocculating soil colloidal particles. The results in this study suggested that compost and gypsum can be used to improve hydrological properties of reclaimed tidal lands through increasing soil water retention and movement, respectively.

Application of a geophysical well log technique for determining permeability in borehole

  • Kim Y.;Park J.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.432-436
    • /
    • 2003
  • Geophysical well logging techniques which are useful for delineating permeability of geological formation have been reviewed. A new technique for obtaining permeability using conductivity log technique has been discussed. This conductivity logging technique has been tested by monitoring the conductivity change within the model hole using borehole environment water and incoming-outgoing water of different salinity with constant flow rate by maintaining balance between inflow and outflow. Conductivity variation features depended mainly on flow rate, density contrasts due to salinity and temperature contrasts between fluid within the hole and incoming-outgoing fluid. The results of the experiment show uniform change of fluid conductivity within bore hole with time, and a fairly good correlation between the flow rate and the conductivity change rate. This conductivity logging technique is expected to be an efficient tool for determining permeability.

  • PDF